The Study of Corrosion Resistance in Selective Laser Melted Ti-6Al-4V Alloy with Different Orientations
FU Lei1,2, YANG Hang1, MOU Jieshuang1, JIAN Ke1, WANG Fuyou3, LIN Li4,5,*, ZHANG Qian1
1 School of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin 644000, Sichuan, China 2 Failure Mechanics and Engineering Disaster Prevention, Key Lab of Sichuan Province, Sichuan University, Chengdu 610065, China 3 Center for Joint Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China 4 School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, China 5 Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, Sichuan, China
Abstract: Titanium alloy is extensively used in the medical field for human implants due to its exceptional physical properties and corrosion resistance. However, the corrosion resistance of different surface orientations in selective laser melted (SLM) Ti-6Al-4V alloy components has not been fully understood. This study aims to investigate the corrosion resistance of various surface orientations of SLM Ti-6Al-4V alloy after subjecting them to 800 ℃ for 2 h in simulated body fluid (SBF). The results show that the alloy samples exhibit an α+β phase structure. Notably, in SBF, the passivation film formed on the SLM-XY surface is thicker, denser, and less soluble than those on other orientations. Electrochemical analysis further reveals that the XY surface displays superior corrosion resistance compared to the XZ surface. This enhanced resistance is attributed to the higher content of the β phase and the presence of corrosion-resistant {0001}α-oriented grains on the SLM-XY surface.
付磊, 杨航, 牟杰爽, 蹇科, 王富友, 林莉, 张千. 选区激光熔化Ti-6Al-4V合金不同取向的耐蚀性能研究[J]. 材料导报, 2025, 39(19): 24080187-7.
FU Lei, YANG Hang, MOU Jieshuang, JIAN Ke, WANG Fuyou, LIN Li, ZHANG Qian. The Study of Corrosion Resistance in Selective Laser Melted Ti-6Al-4V Alloy with Different Orientations. Materials Reports, 2025, 39(19): 24080187-7.
1 Singh P, Pungotra H, Kalsi N S. Materials Today:Proceedings, 2017, 4(8), 8971. 2 Cui Y W, Chen L Y, Liu X X. Current Nanoscience, 2021, 17(2), 241. 3 Froes F H S. Titanium for medical and dental applications—an introduction, Woodhead Publishing, UK, 2018, pp. 3. 4 Milošev I. Pure and Applied Chemistry, 2010, 83(2), 309. 5 Wang Q, Ji Y, Xu D K. Surface Technology, 2019, 48(7), 193 (in Chinese). 王强, 季洋, 徐大可. 表面技术, 2019, 48(7), 193. 6 Gai X. Investigation on corrosion behavior of Ti-6Al-4V alloy fabricated by electron beam melting. Ph. D. Thesis, University of Science and Technology of China, China, 2021 (in Chinese). 盖欣. 电子束选区熔化制备Ti-6Al-4V合金腐蚀性能研究. 博士学位论文, 中国科学技术大学, 2021. 7 Gai X, Bai Y, Li J, et al. Corrosion Science, 2018, 145, 80. 8 Cui Y W. Metastable pitting behavior of laser powder bed fusion Ti-6Al-4V. Master's Thesis, Jiangsu University of Science and Technology, China, 2022 (in Chinese). 崔雨薇. 激光粉床熔融Ti-6Al-4V的亚稳态点蚀行为研究. 硕士学位论文, 江苏科技大学, 2022. 9 Xiao Y, Dai N, Chen Y, et al. Materials Research Express, 2019, 6(12), 126521. 10 Chen J R, Tsai W T. Electrochimica Acta, 2011, 56(4), 1746. 11 Kokubo T, Takadama H. Biomaterials, 2006, 27(15), 2907. 12 Deng H, Zhou L J, Zhang H C, et al. Journal of Sichuan University (Natural Science Edition), 2023, 60(3), 118 (in Chinese). 邓浩, 周吕俊, 张海成, 等. 四川大学学报(自然科学版), 2023, 60(3), 118. 13 Dai N, Zhang L C, Zhang J, et al. Corrosion Science, 2016, 111, 703. 14 Li J, Lin X, Zheng M, et al. Electrochimica Acta, 2018, 283, 1482. 15 Qin B Y. Study on anisotropy of corrosion behavior of laser powder bed fusion Ti-6Al-4V in hank's solution. Master's Thesis, Jiangsu University of Science and Technology, China, 2023 (in Chinese). 秦博渊. 模拟人体环境下激光粉床熔融Ti-6Al-4V腐蚀行为各向异性的研究. 硕士学位论文, 江苏科技大学, 2023. 16 Heakal F E T, Ghoneim A A, Mogoda A S, et al. Corrosion Science, 2011, 53(9), 2728. 17 Alves V A, Reis R Q, Santos I C B, et al. Corrosion Science, 2009, 51(10), 2473. 18 Liu B F, Hu J N, Shi J J, et al. Transactions of Materials and Heat Treatment, 2023, 44(5), 86 (in Chinese). 刘包发, 胡剑南, 石俊杰, 等. 材料热处理学报, 2023, 44(5), 86. 19 Popa M V, Vasilescu E, Drob P, et al. Química Nova, 2010, 33, 1892. 20 Li J, Lin X, Tan H, et al. Journal of Materials Processing Technology, 2022, 307, 117646. 21 Bai Y, Gai X, Li S, et al. Corrosion Science, 2017, 123, 289. 22 Xu W, Lu X, Tian J, et al. Journal of Materials Science & Technology, 2020, 41, 191. 23 McCafferty E. Corrosion Science, 2005, 47(12), 3202. 24 Lin M S, Yu F, Su W, et al. Advanced Materials Research, 2012, 424, 641. 25 Yeganeh M, Shoushtari M T, Khanjar A T, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 679, 132519. 26 Zaveri N, Mahapatra M, Deceuster A, et al. Electrochimica Acta, 2008, 53(15), 5022. 27 Cui Y W, Chen L Y, Chu Y H, et al. Corrosion Science, 2023, 215, 111017. 28 Galvele J R, Torresi R M, Carranza R M. Corrosion Science, 1990, 31, 563. 29 Li J, Lin X, Wang J, et al. Corrosion Science, 2019, 153, 314. 30 Metikos-Huković M, Kwokal A, Piljac J. Biomaterials, 2003, 24(21), 3765. 31 Wu B, Pan Z, Li S, et al. Corrosion Science, 2018, 137, 176. 32 Long M, Rack H J. Biomaterials, 1998, 19(18), 1621. 33 Thair L, Mudali U K, Rajagopalan S, et al. Corrosion Science, 2003, 45(9), 1951. 34 Lu J, Ge P, Li Q, et al. Journal of Alloys and Compounds, 2017, 727, 1126. 35 Song G L, Mishra R, Xu Z Q. Electrochemistry Communications, 2010, 12(8), 1009. 36 Ren S, Du C, Liu Z, et al. Applied Surface Science, 2020, 506, 144759. 37 Hoseini M, Shahryari A, Omanovic S, et al. Corrosion Science, 2009, 51(12), 3064.