Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080187-7    https://doi.org/10.11896/cldb.24080187
  金属与金属基复合材料 |
选区激光熔化Ti-6Al-4V合金不同取向的耐蚀性能研究
付磊1,2, 杨航1, 牟杰爽1, 蹇科1, 王富友3, 林莉4,5,*, 张千1
1 四川轻化工大学机械工程学院,四川 宜宾 644000
2 四川大学灾变力学与工程防灾四川省重点实验室,成都 610065
3 陆军军医大学第一附属医院关节外科,重庆 400038
4 四川轻化工大学材料科学与工程学院,四川 自贡 643000
5 钒钛资源综合利用四川省重点实验室,四川 攀枝花 617000
The Study of Corrosion Resistance in Selective Laser Melted Ti-6Al-4V Alloy with Different Orientations
FU Lei1,2, YANG Hang1, MOU Jieshuang1, JIAN Ke1, WANG Fuyou3, LIN Li4,5,*, ZHANG Qian1
1 School of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin 644000, Sichuan, China
2 Failure Mechanics and Engineering Disaster Prevention, Key Lab of Sichuan Province, Sichuan University, Chengdu 610065, China
3 Center for Joint Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
4 School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, China
5 Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, Sichuan, China
下载:  全 文 ( PDF ) ( 24193KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金因具备优异的物理性能及耐蚀性能,被广泛应用于医疗领域中的人体植入材料,但选区激光熔化(SLM)Ti-6Al-4V合金构件表面不同取向耐蚀性能的差异尚不明确。基于此,本工作研究了SLM Ti-6Al-4V合金经800 ℃保温2 h后,表面不同取向在模拟体液(SBF)中的耐蚀性能。结果显示,合金试样的组织为α+β相,在SBF中SLM-XY面上形成的钝化膜较厚且致密、溶解性更低;电化学分析表明XY面在SBF中的耐蚀性较XZ面更好,这归结于SLM-XY面含有更多的β相和耐蚀性强的{0001}α取向晶粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付磊
杨航
牟杰爽
蹇科
王富友
林莉
张千
关键词:  Ti-6Al-4V合金  选区激光熔化  耐蚀性  钝化膜  电化学    
Abstract: Titanium alloy is extensively used in the medical field for human implants due to its exceptional physical properties and corrosion resistance. However, the corrosion resistance of different surface orientations in selective laser melted (SLM) Ti-6Al-4V alloy components has not been fully understood. This study aims to investigate the corrosion resistance of various surface orientations of SLM Ti-6Al-4V alloy after subjecting them to 800 ℃ for 2 h in simulated body fluid (SBF). The results show that the alloy samples exhibit an α+β phase structure. Notably, in SBF, the passivation film formed on the SLM-XY surface is thicker, denser, and less soluble than those on other orientations. Electrochemical analysis further reveals that the XY surface displays superior corrosion resistance compared to the XZ surface. This enhanced resistance is attributed to the higher content of the β phase and the presence of corrosion-resistant {0001}α-oriented grains on the SLM-XY surface.
Key words:  Ti-6Al-4V alloy    selective laser melting    corrosion resistance    passivation film    electrochemistry
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TG172  
基金资助: 灾变力学与工程防灾减灾四川省重点实验室(四川大学)开放课题基金(FMEDP202109);四川省区域创新合作项目(2024YFHZ0073);钒钛资源综合利用四川省重点实验室开放基金(2022FTSZ14);四川轻化工大学科研创新团队计划(SUSE652A015)
通讯作者:  *林莉,博士,四川轻化工大学材料科学与工程学院讲师。目前主要从事管道微生物腐蚀与防护、腐蚀涂层等研究。linli1031suse@126.com   
作者简介:  付磊,博士,四川轻化工大学机械工程学院教授、硕士研究生导师。目前主要从事结构及材料疲劳断裂、金属微生物腐蚀疲劳等方面的研究。
引用本文:    
付磊, 杨航, 牟杰爽, 蹇科, 王富友, 林莉, 张千. 选区激光熔化Ti-6Al-4V合金不同取向的耐蚀性能研究[J]. 材料导报, 2025, 39(19): 24080187-7.
FU Lei, YANG Hang, MOU Jieshuang, JIAN Ke, WANG Fuyou, LIN Li, ZHANG Qian. The Study of Corrosion Resistance in Selective Laser Melted Ti-6Al-4V Alloy with Different Orientations. Materials Reports, 2025, 39(19): 24080187-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080187  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080187
1 Singh P, Pungotra H, Kalsi N S. Materials Today:Proceedings, 2017, 4(8), 8971.
2 Cui Y W, Chen L Y, Liu X X. Current Nanoscience, 2021, 17(2), 241.
3 Froes F H S. Titanium for medical and dental applications—an introduction, Woodhead Publishing, UK, 2018, pp. 3.
4 Milošev I. Pure and Applied Chemistry, 2010, 83(2), 309.
5 Wang Q, Ji Y, Xu D K. Surface Technology, 2019, 48(7), 193 (in Chinese).
王强, 季洋, 徐大可. 表面技术, 2019, 48(7), 193.
6 Gai X. Investigation on corrosion behavior of Ti-6Al-4V alloy fabricated by electron beam melting. Ph. D. Thesis, University of Science and Technology of China, China, 2021 (in Chinese).
盖欣. 电子束选区熔化制备Ti-6Al-4V合金腐蚀性能研究. 博士学位论文, 中国科学技术大学, 2021.
7 Gai X, Bai Y, Li J, et al. Corrosion Science, 2018, 145, 80.
8 Cui Y W. Metastable pitting behavior of laser powder bed fusion Ti-6Al-4V. Master's Thesis, Jiangsu University of Science and Technology, China, 2022 (in Chinese).
崔雨薇. 激光粉床熔融Ti-6Al-4V的亚稳态点蚀行为研究. 硕士学位论文, 江苏科技大学, 2022.
9 Xiao Y, Dai N, Chen Y, et al. Materials Research Express, 2019, 6(12), 126521.
10 Chen J R, Tsai W T. Electrochimica Acta, 2011, 56(4), 1746.
11 Kokubo T, Takadama H. Biomaterials, 2006, 27(15), 2907.
12 Deng H, Zhou L J, Zhang H C, et al. Journal of Sichuan University (Natural Science Edition), 2023, 60(3), 118 (in Chinese).
邓浩, 周吕俊, 张海成, 等. 四川大学学报(自然科学版), 2023, 60(3), 118.
13 Dai N, Zhang L C, Zhang J, et al. Corrosion Science, 2016, 111, 703.
14 Li J, Lin X, Zheng M, et al. Electrochimica Acta, 2018, 283, 1482.
15 Qin B Y. Study on anisotropy of corrosion behavior of laser powder bed fusion Ti-6Al-4V in hank's solution. Master's Thesis, Jiangsu University of Science and Technology, China, 2023 (in Chinese).
秦博渊. 模拟人体环境下激光粉床熔融Ti-6Al-4V腐蚀行为各向异性的研究. 硕士学位论文, 江苏科技大学, 2023.
16 Heakal F E T, Ghoneim A A, Mogoda A S, et al. Corrosion Science, 2011, 53(9), 2728.
17 Alves V A, Reis R Q, Santos I C B, et al. Corrosion Science, 2009, 51(10), 2473.
18 Liu B F, Hu J N, Shi J J, et al. Transactions of Materials and Heat Treatment, 2023, 44(5), 86 (in Chinese).
刘包发, 胡剑南, 石俊杰, 等. 材料热处理学报, 2023, 44(5), 86.
19 Popa M V, Vasilescu E, Drob P, et al. Química Nova, 2010, 33, 1892.
20 Li J, Lin X, Tan H, et al. Journal of Materials Processing Technology, 2022, 307, 117646.
21 Bai Y, Gai X, Li S, et al. Corrosion Science, 2017, 123, 289.
22 Xu W, Lu X, Tian J, et al. Journal of Materials Science & Technology, 2020, 41, 191.
23 McCafferty E. Corrosion Science, 2005, 47(12), 3202.
24 Lin M S, Yu F, Su W, et al. Advanced Materials Research, 2012, 424, 641.
25 Yeganeh M, Shoushtari M T, Khanjar A T, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 679, 132519.
26 Zaveri N, Mahapatra M, Deceuster A, et al. Electrochimica Acta, 2008, 53(15), 5022.
27 Cui Y W, Chen L Y, Chu Y H, et al. Corrosion Science, 2023, 215, 111017.
28 Galvele J R, Torresi R M, Carranza R M. Corrosion Science, 1990, 31, 563.
29 Li J, Lin X, Wang J, et al. Corrosion Science, 2019, 153, 314.
30 Metikos-Huković M, Kwokal A, Piljac J. Biomaterials, 2003, 24(21), 3765.
31 Wu B, Pan Z, Li S, et al. Corrosion Science, 2018, 137, 176.
32 Long M, Rack H J. Biomaterials, 1998, 19(18), 1621.
33 Thair L, Mudali U K, Rajagopalan S, et al. Corrosion Science, 2003, 45(9), 1951.
34 Lu J, Ge P, Li Q, et al. Journal of Alloys and Compounds, 2017, 727, 1126.
35 Song G L, Mishra R, Xu Z Q. Electrochemistry Communications, 2010, 12(8), 1009.
36 Ren S, Du C, Liu Z, et al. Applied Surface Science, 2020, 506, 144759.
37 Hoseini M, Shahryari A, Omanovic S, et al. Corrosion Science, 2009, 51(12), 3064.
[1] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[2] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[3] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[4] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[5] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[6] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[7] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[8] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[9] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[10] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[11] 岳庆, 李文全, 盛鸿伟, 兰伟. 高温退火增强碳纳米管的生物电化学性能研究[J]. 材料导报, 2025, 39(18): 24080109-5.
[12] 曲九灏, 雷宽, 马棋盛, 张艺馨, 刘贵群, 张小丽. DD90镍基单晶高温合金的电化学溶解行为研究[J]. 材料导报, 2025, 39(17): 24060120-7.
[13] 李亮星, 薛丽蓉, 程一, 吴家航, 王劲松, 黄茜琳. 熔盐电解法制备钇铝中间合金研究进展[J]. 材料导报, 2025, 39(17): 24070152-9.
[14] 白京陇, 元丽华, 戴怡乐, 赵继威, 贺艳霞, 魏智强. 金属有机框架衍生的碳包覆二硫化钴多面体材料的电化学性能研究[J]. 材料导报, 2025, 39(16): 24090099-8.
[15] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed