Research Progress in the Modification of Heteroatom-doped Carbon Coatings on Lithium Iron Phosphate Cathode
PENG Chaoyin1,2, YAO Yaochun1,2,*, LI Yin1,2,*, CHEN Qiulin1,2, ZHANG Keyu1,2, HU Junxian1,2, ZHANG Shaoze1,2
1 School of Metallurgy and Energy Engineering, Kunming University of Technology, Kunming 650093, China 2 National Engineering Laboratory of Vacuum Metallurgy, Kunming University of Technology, Kunming 650093, China
Abstract: Lithium iron phosphate (LiFePO4) has become the mainstream anode material in the current market due to its low production cost, environmental friendliness, thermal stability and high safety. In battery technology development, carbon capping technology is widely used to improve the conductivity and multiplicity performance of electrode materials. However, this technology still faces several challenges in practical applications, including uneven carbon coating, excessive carbon content, and instability in the structure of the carbon coating layer, which lead to reductions in energy density and cycling life. Doping heteroatoms into the lattice of carbon-based materials is demonstrated to be an effective solution based on the results from the experimental and theoretical studies. Heteroatoms enhance the electrical conductivity of the electrodes by adjusting the electronic structure of the carbon layer, while increasing the graphitization degree of the carbon material improves its chemical stability. Additionally, the introduction of heteroatoms can suppress the aggregation and growth of LiFePO4 particles, thereby improving the structural stability of the carbon coating. This approach not only enhances electrochemical performance but also effectively reduces the volume occupied by the carbon layer in the electrode, thus meeting the requirements for energy density. This paper reviews the recent advancements in the research on heteroatom-doped carbon coatings for LiFePO4, summarizes in detail the effect of single heteroatom-, double heteroatom- and triple heteroatom-doped with carbon coating on the modification of LiFePO4, the existing challenges are identified, and future research directions are proposed.
彭朝银, 姚耀春, 李银, 陈秋霖, 张克宇, 胡均贤, 张少泽. 杂原子掺杂磷酸铁锂碳包覆层的改性研究进展[J]. 材料导报, 2025, 39(19): 24080184-8.
PENG Chaoyin, YAO Yaochun, LI Yin, CHEN Qiulin, ZHANG Keyu, HU Junxian, ZHANG Shaoze. Research Progress in the Modification of Heteroatom-doped Carbon Coatings on Lithium Iron Phosphate Cathode. Materials Reports, 2025, 39(19): 24080184-8.
1 Chen H, Li H, Xu Y, et al. Energy Storage Science and Technology, 2024, 13, 1359. 2 Zhang M, Wu H, Wu J, et al. New Chemical Materials, 2024, 52, 1. 3 Kaushik S, Mehta T, Chand P, et al. Journal of Energy Storage, 2024, 97, 112818. 4 Wang Y, Xu C, Tian X, et al. Chinese Journal of Structural Chemistry, 2023, 42, 10. 5 Lu J M, Tian X H, Zhou Y K, et al. Electrochimica Acta, 2019, 320, 8. 6 Pan X, Zhuang S, Sun Y, et al. Inorganic Chemicals Industry, 2023, 55, 18. 7 Feng X, Sun J, He J, et al. Energy Storage Science and Technology, 2022, 11, 467. 8 Gao Y, Xiong K, Zhu B. New Chemical Materials, 2019, 47, 46. 9 Chen Z X, Zhang W X, Yang Z H. Nanotechnology, 2020, 31, 35. 10 Feng J P, Wang Y L. Applied Surface Science, 2016, 390, 481. 11 Okada K, Kimura I, Machida K. RSC Advances, 2018, 8, 5848. 12 Radhamani A V. Materials Research Express, 2018, 5, 9. 13 Yi W L, Sun C S, Jiang W T, et al. Materials Letters, 2022, 324, 4. 14 Zhou J H, Shi Q T, Ullah S, et al. Advanced Functional Materials, 2020, 30, 19. 15 Sim G S, Shaji N, Santhoshkumar P, et al. Nanomaterials, 2022, 12, 14. 16 Prosini P P, Zane D, Pasquali M. Electrochimica Acta, 2001, 46, 3517. 17 Gören A, Costa C M, Silva M M, et al. Composites Part B, 2015, 83, 333. 18 Tarascon J M, Armand M. Nature, 2001, 414, 359. 19 Chen Z H, Dahn J R. Journal of the Electrochemical Society, 2002, 149, A1184. 20 Chuang H C, Teng J W, Kuan W F. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2024, 684, 9. 21 Sim G S, Nanthagopal M, Santhoshkumar P, et al. Journal of Alloys and Compounds, 2022, 902, 163720. 22 Liu H W, Ge R K. Journal of Energy Storage, 2023, 73, 9. 23 Jiang Z, Zhang B, Shen Q, et al. Journal of Alloys and Compounds, 2019, 806, 864. 24 Paraknowitsch J P, Thomas A. Energy & Environmental Science, 2013, 6, 2839. 25 Wei S Q, Yin X H, Li H Y, et al. Chemistry-A European Journal, 2020, 26, 8129. 26 Yoon S, Liao C, Sun X G, et al. Journal of Materials Chemistry, 2012, 22, 4611. 27 Zhang K, Lee J T, Li P, et al. Nano Letters, 2015, 15, 6756. 28 Wang P, Zhang G, Li Z C, et al. ACS Applied Materials & Interfaces, 2016, 8, 26908. 29 Shen W, Wang C, Xu Q, et al. Advanced Energy Materials, 2015, 5(1), 1400982. 30 Chen L, Liu S, Liu J, et al. New Chemical Materials, 2019, 47, 232. 31 Han B, Meng X D, Ma L, et al. Ceramics International, 2016, 42, 2789. 32 Zhang B, Yuan X B, Li H, et al. Journal of Alloys and Compounds, 2015, 627, 13. 33 Wang C, Guo Z, Shen W, et al. Advanced Functional Materials, 2014, 24(35), 5457. 34 Li H X, Zhu J H, Huang X B, et al. Rare Metals, 2022, 41, 4055. 35 Wang S, Wang F, Zhang J, et al. Computational and Theoretical Chemistry, 2023, 1227, 114254. 36 Trócoli R, Franger S, Cruz M, et al. Electrochimica Acta, 2014, 135, 558. 37 Li Y, Wang L, Liang F, et al. Journal of Alloys and Compounds, 2021, 880, 8. 38 Morita T, Takami N. Electrochimica Acta, 2004, 49, 2591. 39 Kim K H, Ahn H J. Journal of Alloys and Compounds, 2024, 1008, 176835. 40 Wang W, Tang M Q, Yan Z W. Ceramics International, 2020, 46, 22999. 41 Xu D, Wang P F, Shen B W. Ceramics International, 2016, 42, 5331. 42 Sun Y Z, Ning G Q, Qi C L, et al. Electrochimica Acta, 2016, 190, 141. 43 Wang J A, Wang M F, Liang Y, et al. Chemical Physics, 2022, 563, 7. 44 Li C, Xie Y, Zhang N, et al. Ionics, 2019, 25, 927. 45 Karthika P, Rajalakshmi N, Dhathathreyan K S. Journal of Nanoscience and Nanotechnology, 2013, 13, 1746. 46 Li Y, Wang L, Zhang K Y, et al. Vacuum, 2021, 184, 8. 47 Zhang L L, Liu J, Wei C, et al. ACS Applied Materials & Interfaces, 2020, 12, 3670. 48 Jugović D, Mitric M, Milovic M, et al. Ceramics International, 2017, 43, 3224. 49 Radhamani A V, Karthik C, Ubic R, et al. Scripta Materialia, 2013, 69, 96. 50 Gao C, Zhou J, Liu G Z, et al. Journal of Alloys and Compounds, 2017, 727, 501. 51 Wang X F, Feng Z J, Hou X L, et al. Chemical Engineering Journal, 2020, 379, 10. 52 Zhou J S, Lian J, Hou L, et al. Nature Communications, 2015, 6, 8. 53 Pan M S, Lin X H, Zhou Z T. Journal of Solid State Electrochemistry, 2012, 16, 1615. 54 Li Y, Wang L, Zhang K, et al. Journal of Alloys and Compounds, 2022, 890, 161617. 55 Liu B, Sun X, Liao Z, et al. Scientific Reports, 2021, 11(1), 5633. 56 Zhang B, Wang S, Liu L, et al. Nanotechnology, 2022, 33(40), 405601. 57 Chen X, Chen X R, Hou T Z, et al. Science Advances, 2019, 5, 9. 58 Kim K H, Ahn H J. International Journal of Energy Research, 2022, 46, 8367. 59 Zhang T T, Liu P, Zhong Y, et al. Carbon, 2022, 198, 91. 60 Zhu T, Li S B, Ren B, et al. Journal of Materials Science, 2019, 54, 9632. 61 Zhang J L, Nie N, Liu Y Y, et al. ACS Applied Materials & Interfaces, 2015, 7, 20134. 62 Xiao F, Lin Z, Zhang J, et al. Energy Storage Materials, 2021, 41, 61. 63 Pei C G, Ding R F, Yu X, et al. Chemcatchem, 2019, 11, 4617. 64 Lai A J, Chu Y Q, Jiang J T, et al. Electrochimica Acta, 2022, 414, 9. 65 Shaji N, Jiang F, Sung J Y, et al. Journal of Energy Storage, 2023, 72, 7. 66 Liu J, Wang S, He J, et al. Journal of Industrial and Engineering Che-mistry, 2024, 137, 376. 67 Meng Y S, Li Y Z, Xia J, et al. Applied Surface Science, 2019, 476, 761. 68 Wang H W, Wang C, Dang B K, et al. Chemelectrochem, 2018, 5, 2367. 69 Huang Q, Lee Y Y, Gurkan B. Industrial & Engineering Chemistry Research, 2019, 58, 22587.