Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080184-8    https://doi.org/10.11896/cldb.24080184
  无机非金属及其复合材料 |
杂原子掺杂磷酸铁锂碳包覆层的改性研究进展
彭朝银1,2, 姚耀春1,2,*, 李银1,2,*, 陈秋霖1,2, 张克宇1,2, 胡均贤1,2, 张少泽1,2
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 昆明理工大学真空冶金国家工程研究中心,昆明 650093
Research Progress in the Modification of Heteroatom-doped Carbon Coatings on Lithium Iron Phosphate Cathode
PENG Chaoyin1,2, YAO Yaochun1,2,*, LI Yin1,2,*, CHEN Qiulin1,2, ZHANG Keyu1,2, HU Junxian1,2, ZHANG Shaoze1,2
1 School of Metallurgy and Energy Engineering, Kunming University of Technology, Kunming 650093, China
2 National Engineering Laboratory of Vacuum Metallurgy, Kunming University of Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 13111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸铁锂(LiFePO4)因生产成本低、环境友好、热稳定性好和安全性高,成为当前市场主流的正极材料。在电池技术开发中,碳包覆技术被广泛用于提高电极材料的导电性和倍率性能。然而,这一技术在实际应用中仍面临一些挑战,包括碳包覆不均匀、碳含量过高以及碳包覆层的结构不稳定引起的能量密度和循环寿命下降。实验和理论研究的结果表明,在碳基材料的晶格中掺杂杂原子是一种有效的解决方案。杂原子通过调节碳层的电子结构增强电极的导电性,提高碳材料的石墨化程度来增强其化学稳定性。此外,杂原子的引入还能够抑制LiFePO4颗粒的团聚与生长,从而改善碳包覆层的结构稳定性;这一方法在提升电化学性能的同时,有效减少了碳层对电极体积的占用,满足了能量密度的需求。本文综述了近年来关于杂原子掺杂碳包覆LiFePO4的研究进展,详细总结了单杂原子、双杂原子及多杂原子掺杂碳包覆LiFePO4的改性效果,指出了存在的问题并提出了未来的研究趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭朝银
姚耀春
李银
陈秋霖
张克宇
胡均贤
张少泽
关键词:  磷酸铁锂  正极材料  碳包覆  杂原子掺杂    
Abstract: Lithium iron phosphate (LiFePO4) has become the mainstream anode material in the current market due to its low production cost, environmental friendliness, thermal stability and high safety. In battery technology development, carbon capping technology is widely used to improve the conductivity and multiplicity performance of electrode materials. However, this technology still faces several challenges in practical applications, including uneven carbon coating, excessive carbon content, and instability in the structure of the carbon coating layer, which lead to reductions in energy density and cycling life. Doping heteroatoms into the lattice of carbon-based materials is demonstrated to be an effective solution based on the results from the experimental and theoretical studies. Heteroatoms enhance the electrical conductivity of the electrodes by adjusting the electronic structure of the carbon layer, while increasing the graphitization degree of the carbon material improves its chemical stability. Additionally, the introduction of heteroatoms can suppress the aggregation and growth of LiFePO4 particles, thereby improving the structural stability of the carbon coating. This approach not only enhances electrochemical performance but also effectively reduces the volume occupied by the carbon layer in the electrode, thus meeting the requirements for energy density. This paper reviews the recent advancements in the research on heteroatom-doped carbon coatings for LiFePO4, summarizes in detail the effect of single heteroatom-, double heteroatom- and triple heteroatom-doped with carbon coating on the modification of LiFePO4, the existing challenges are identified, and future research directions are proposed.
Key words:  lithium iron phosphate    cathode material    carbon coating    heteroatom-doped
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(52064031);云南省基础研究项目(202301be070001-065;202301AU070055);大学生创新训练项目(202310674081)
通讯作者:  *姚耀春,昆明理工大学冶金与能源工程学院教授、博士研究生导师。主要从事锂离子动力和储能电池及其正负极材料制备、冶金过程强化、高纯化学物制备等方面的研究开发和产业化。yaochun9796@163.com
李银,昆明理工大学冶金与能源工程学院讲师、硕士研究生导师。目前主要从事锂离子电池正极材料研发及水系锌离子电池方面的研究。510527335@qq.com   
作者简介:  彭朝银,昆明理工大学冶金与能源工程学院硕士研究生,在姚耀春教授的指导下进行研究,研究方向为锂离子电池正极材料研发。
引用本文:    
彭朝银, 姚耀春, 李银, 陈秋霖, 张克宇, 胡均贤, 张少泽. 杂原子掺杂磷酸铁锂碳包覆层的改性研究进展[J]. 材料导报, 2025, 39(19): 24080184-8.
PENG Chaoyin, YAO Yaochun, LI Yin, CHEN Qiulin, ZHANG Keyu, HU Junxian, ZHANG Shaoze. Research Progress in the Modification of Heteroatom-doped Carbon Coatings on Lithium Iron Phosphate Cathode. Materials Reports, 2025, 39(19): 24080184-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080184  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080184
1 Chen H, Li H, Xu Y, et al. Energy Storage Science and Technology, 2024, 13, 1359.
2 Zhang M, Wu H, Wu J, et al. New Chemical Materials, 2024, 52, 1.
3 Kaushik S, Mehta T, Chand P, et al. Journal of Energy Storage, 2024, 97, 112818.
4 Wang Y, Xu C, Tian X, et al. Chinese Journal of Structural Chemistry, 2023, 42, 10.
5 Lu J M, Tian X H, Zhou Y K, et al. Electrochimica Acta, 2019, 320, 8.
6 Pan X, Zhuang S, Sun Y, et al. Inorganic Chemicals Industry, 2023, 55, 18.
7 Feng X, Sun J, He J, et al. Energy Storage Science and Technology, 2022, 11, 467.
8 Gao Y, Xiong K, Zhu B. New Chemical Materials, 2019, 47, 46.
9 Chen Z X, Zhang W X, Yang Z H. Nanotechnology, 2020, 31, 35.
10 Feng J P, Wang Y L. Applied Surface Science, 2016, 390, 481.
11 Okada K, Kimura I, Machida K. RSC Advances, 2018, 8, 5848.
12 Radhamani A V. Materials Research Express, 2018, 5, 9.
13 Yi W L, Sun C S, Jiang W T, et al. Materials Letters, 2022, 324, 4.
14 Zhou J H, Shi Q T, Ullah S, et al. Advanced Functional Materials, 2020, 30, 19.
15 Sim G S, Shaji N, Santhoshkumar P, et al. Nanomaterials, 2022, 12, 14.
16 Prosini P P, Zane D, Pasquali M. Electrochimica Acta, 2001, 46, 3517.
17 Gören A, Costa C M, Silva M M, et al. Composites Part B, 2015, 83, 333.
18 Tarascon J M, Armand M. Nature, 2001, 414, 359.
19 Chen Z H, Dahn J R. Journal of the Electrochemical Society, 2002, 149, A1184.
20 Chuang H C, Teng J W, Kuan W F. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2024, 684, 9.
21 Sim G S, Nanthagopal M, Santhoshkumar P, et al. Journal of Alloys and Compounds, 2022, 902, 163720.
22 Liu H W, Ge R K. Journal of Energy Storage, 2023, 73, 9.
23 Jiang Z, Zhang B, Shen Q, et al. Journal of Alloys and Compounds, 2019, 806, 864.
24 Paraknowitsch J P, Thomas A. Energy & Environmental Science, 2013, 6, 2839.
25 Wei S Q, Yin X H, Li H Y, et al. Chemistry-A European Journal, 2020, 26, 8129.
26 Yoon S, Liao C, Sun X G, et al. Journal of Materials Chemistry, 2012, 22, 4611.
27 Zhang K, Lee J T, Li P, et al. Nano Letters, 2015, 15, 6756.
28 Wang P, Zhang G, Li Z C, et al. ACS Applied Materials & Interfaces, 2016, 8, 26908.
29 Shen W, Wang C, Xu Q, et al. Advanced Energy Materials, 2015, 5(1), 1400982.
30 Chen L, Liu S, Liu J, et al. New Chemical Materials, 2019, 47, 232.
31 Han B, Meng X D, Ma L, et al. Ceramics International, 2016, 42, 2789.
32 Zhang B, Yuan X B, Li H, et al. Journal of Alloys and Compounds, 2015, 627, 13.
33 Wang C, Guo Z, Shen W, et al. Advanced Functional Materials, 2014, 24(35), 5457.
34 Li H X, Zhu J H, Huang X B, et al. Rare Metals, 2022, 41, 4055.
35 Wang S, Wang F, Zhang J, et al. Computational and Theoretical Chemistry, 2023, 1227, 114254.
36 Trócoli R, Franger S, Cruz M, et al. Electrochimica Acta, 2014, 135, 558.
37 Li Y, Wang L, Liang F, et al. Journal of Alloys and Compounds, 2021, 880, 8.
38 Morita T, Takami N. Electrochimica Acta, 2004, 49, 2591.
39 Kim K H, Ahn H J. Journal of Alloys and Compounds, 2024, 1008, 176835.
40 Wang W, Tang M Q, Yan Z W. Ceramics International, 2020, 46, 22999.
41 Xu D, Wang P F, Shen B W. Ceramics International, 2016, 42, 5331.
42 Sun Y Z, Ning G Q, Qi C L, et al. Electrochimica Acta, 2016, 190, 141.
43 Wang J A, Wang M F, Liang Y, et al. Chemical Physics, 2022, 563, 7.
44 Li C, Xie Y, Zhang N, et al. Ionics, 2019, 25, 927.
45 Karthika P, Rajalakshmi N, Dhathathreyan K S. Journal of Nanoscience and Nanotechnology, 2013, 13, 1746.
46 Li Y, Wang L, Zhang K Y, et al. Vacuum, 2021, 184, 8.
47 Zhang L L, Liu J, Wei C, et al. ACS Applied Materials & Interfaces, 2020, 12, 3670.
48 Jugović D, Mitric M, Milovic M, et al. Ceramics International, 2017, 43, 3224.
49 Radhamani A V, Karthik C, Ubic R, et al. Scripta Materialia, 2013, 69, 96.
50 Gao C, Zhou J, Liu G Z, et al. Journal of Alloys and Compounds, 2017, 727, 501.
51 Wang X F, Feng Z J, Hou X L, et al. Chemical Engineering Journal, 2020, 379, 10.
52 Zhou J S, Lian J, Hou L, et al. Nature Communications, 2015, 6, 8.
53 Pan M S, Lin X H, Zhou Z T. Journal of Solid State Electrochemistry, 2012, 16, 1615.
54 Li Y, Wang L, Zhang K, et al. Journal of Alloys and Compounds, 2022, 890, 161617.
55 Liu B, Sun X, Liao Z, et al. Scientific Reports, 2021, 11(1), 5633.
56 Zhang B, Wang S, Liu L, et al. Nanotechnology, 2022, 33(40), 405601.
57 Chen X, Chen X R, Hou T Z, et al. Science Advances, 2019, 5, 9.
58 Kim K H, Ahn H J. International Journal of Energy Research, 2022, 46, 8367.
59 Zhang T T, Liu P, Zhong Y, et al. Carbon, 2022, 198, 91.
60 Zhu T, Li S B, Ren B, et al. Journal of Materials Science, 2019, 54, 9632.
61 Zhang J L, Nie N, Liu Y Y, et al. ACS Applied Materials & Interfaces, 2015, 7, 20134.
62 Xiao F, Lin Z, Zhang J, et al. Energy Storage Materials, 2021, 41, 61.
63 Pei C G, Ding R F, Yu X, et al. Chemcatchem, 2019, 11, 4617.
64 Lai A J, Chu Y Q, Jiang J T, et al. Electrochimica Acta, 2022, 414, 9.
65 Shaji N, Jiang F, Sung J Y, et al. Journal of Energy Storage, 2023, 72, 7.
66 Liu J, Wang S, He J, et al. Journal of Industrial and Engineering Che-mistry, 2024, 137, 376.
67 Meng Y S, Li Y Z, Xia J, et al. Applied Surface Science, 2019, 476, 761.
68 Wang H W, Wang C, Dang B K, et al. Chemelectrochem, 2018, 5, 2367.
69 Huang Q, Lee Y Y, Gurkan B. Industrial & Engineering Chemistry Research, 2019, 58, 22587.
[1] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[2] 白京陇, 元丽华, 戴怡乐, 赵继威, 贺艳霞, 魏智强. 金属有机框架衍生的碳包覆二硫化钴多面体材料的电化学性能研究[J]. 材料导报, 2025, 39(16): 24090099-8.
[3] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[4] 帕提曼·阿不都, 何一涛, 白翔, 伊尔夏提·地里夏提, 罗新泽, 何晓燕, 闫秀玲, 李海金. 双离子电池中阴离子可逆体系设计与正极材料研究进展[J]. 材料导报, 2024, 38(2): 22070163-13.
[5] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[6] 郭丁萌, 李晓玉, 孙天懿, 连海兰. 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 23040116-11.
[7] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[8] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[9] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[10] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[11] 何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
[12] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[13] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[14] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[15] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed