Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25030076-6    https://doi.org/10.11896/cldb.25030076
  空间润滑材料 |
关键工艺参数对含油多孔聚酰亚胺保持器材料性能的影响
贺颖1,2, 胡继星1, 胡汉军1, 王世伟1, 霍丽霞1, 周晖1, 张凯锋1,*, 高鸿3,*
1 兰州空间技术物理研究所真空技术与物理全国重点实验室,兰州 730000
2 中南大学化学与化工学院,长沙 410083
3 中国空间技术研究院,北京 100094
Effect of Key Process Parameters on the Properties of Oil-impregnated Porous Polyimide Retainers
HE Ying1,2, HU Jixing1, HU Hanjun1, WANG Shiwei1, HUO Lixia1, ZHOU Hui1, ZHANG Kaifeng1,*, GAO Hong3
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
2 School Chemistry and Chemicl Engineering, Central South University, Changsha 410083, China
3 China Academy of Space Technology, Beijing 100094, China
下载:  全 文 ( PDF ) ( 10169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含油多孔聚酰亚胺(PI)材料不仅具备良好的耐腐蚀性能和自润滑性能,同时由于具有特殊的孔隙结构,可实现持续稳定的贮油和供油功能,在轴承保持器中被广泛应用,可为轴承运转提供可靠的润滑保障。本工作主要研究多孔材料成型过程中的关键工艺参数(包括粉末粒径、保压过程及烧结方式)对多孔PI材料孔隙微观结构、含油性能和摩擦学性能的影响,进一步优化设计多孔PI保持器材料的成型工艺。结果表明:选择粒径为200目的粉末、至少两次泄压排气及定容烧结方法制备出的多孔PI材料综合性能优异,其含油率在23%左右(可调控),含油保持率可达99%,大气和真空条件下的摩擦系数均小于0.09。优化后的工艺在制造适用于严苛的空间使用工况下长寿命、高精度的高速轴承保持器方面有很大的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺颖
胡继星
胡汉军
王世伟
霍丽霞
周晖
张凯锋
高鸿
关键词:  含油多孔聚酰亚胺  工艺参数  含油性能  摩擦学性能    
Abstract: Oil-impregnated porous polyimide (PI) exhibits excellent corrosion resistance and self-lubricating properties. Unique pore structure of the material enables sustained and stable oil storage and supply, making it widely applicable in bearing retainers to ensure reliable lubrication during operation. This study systematically investigates the effects of key process parameters—including powder particle size, pressure-retaining process, and sintering methods—on the pore microstructure, oil retention capacity, and tribological properties of porous PI. The forming process for porous PI retainers is further optimized through experimental analysis. Results demonstrate that porous PI synthesized using 200-mesh particles, a multi-stage pressure release process (≥2 cycles), and constant-volume sintering achieves optimal comprehensive performance. The material maintains an oil content of approximately 23%, an oil retention rate exceeding 99%, a coefficient of friction below 0.09 under atmospheric conditions and vacuum environments. The optimized forming process shows significant application potential for manufacturing high-precision, long-service-life retainers in high-speed bearings operating under harsh aerospace conditions.
Key words:  oil-impregnated porous polyimide    process parameter    oil retention capacity    tribological performance
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TH117  
  TH145  
通讯作者:  张凯锋,理学博士,研究员,甘肃省领军人才(第二层次),中国航天科技集团有限公司工艺技术带头人。目前从事空间摩擦学、空间柔性航天器技术及基于航天器武器装备应用的表面工艺技术研究。zhangkf510@sina.com
高鸿,博士,中国空间技术研究院研究员,目前从事高分子材料等领域的研究。gaohong_cast@sina.com   
作者简介:  贺颖,博士,现工作于兰州空间技术物理研究所。主要从事聚合物基自润滑材料、空间润滑与摩擦相关领域的研究。
引用本文:    
贺颖, 胡继星, 胡汉军, 王世伟, 霍丽霞, 周晖, 张凯锋, 高鸿. 关键工艺参数对含油多孔聚酰亚胺保持器材料性能的影响[J]. 材料导报, 2025, 39(15): 25030076-6.
HE Ying, HU Jixing, HU Hanjun, WANG Shiwei, HUO Lixia, ZHOU Hui, ZHANG Kaifeng, GAO Hong3. Effect of Key Process Parameters on the Properties of Oil-impregnated Porous Polyimide Retainers. Materials Reports, 2025, 39(15): 25030076-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030076  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25030076
1 Wu L F, Zhang Z Z, Yang M M, et al. Friction, 2022, 10(3), 411.
2 Sun X B, Wang Z J, Wang F. Bearing, 2013(9), 54 (in Chinese).
孙小波, 王子君, 王枫. 轴承, 2013(9), 54.
3 Marchetti M, Meurisse M H, Vergne P, et al. In:Thinning films and tribological interfaces, Tribology Series, Elsevier, 2000, 38, 777.
4 Wang J Q, Zhao H J, Huang W, et al. Wear, 2017, 380, 52.
5 Sun X B, Shang X H, Li K Y, et al. Engineering Plastics Application, 2021, 49(9), 109 (in Chinese).
孙小波, 尚晓辉, 李柯颖, 等. 工程塑料应用, 2021, 49(9), 109.
6 Ye J Z, Li J B, Zhou N N, et al. Journal of Materials Engineering, 2020, 48(9), 144 (in Chinese).
叶锦宗, 李锦棒, 周宁宁, 等. 材料工程, 2020, 48(9), 144.
7 Chen W, Zhu P, Liang H, et al. Tribology International, 2022, 173, 107596.
8 Chen W, Wang W, Zhu P, et al. 2023, 11(8), 1419.
9 Ruan H W, Zhang S H, Wang T M, et al. Aerospace Control and Application, 2019, 45(3), 7 (in Chinese).
阮洪伟, 张韶华, 王廷梅, 等. 空间控制技术与应用, 2019, 45(3), 7.
10 Wang Z J. The study of oil-impregnated porous polymide retainers used for gyroscope bearing. Master's Thesis, Hefei University of Technology, China, 2004 (in Chinese).
王子君. 陀螺轴承用多孔含油聚酰亚胺保持架研究. 硕士学位论文, 合肥工业大学, 2004.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 温晋太, 胡怀谷, 安江山, 韩婷, 李欣俞, 胡季帆. 基于机器学习的快淬NdFeB磁体永磁性能分析与预测[J]. 材料导报, 2025, 39(8): 24030158-7.
[3] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[4] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[5] 历健, 郝宏, 周志勇, 汪科良, 郑玉刚, 赵蒙, 周晖, 张凯锋. 乙炔流量对四面体含氢非晶碳薄膜结构、机械特性和大气摩擦学性能的影响[J]. 材料导报, 2025, 39(15): 25030081-8.
[6] 郑玉刚, 苟世宁, 冯兴国, 汪科良, 赵蒙, 张凯锋, 周晖, 李林. 金属掺杂MoS2基复合薄膜的微观结构与真空摩擦学性能研究[J]. 材料导报, 2025, 39(15): 25040052-7.
[7] 杜娴, 禹东欣, 柳建, 蔡志海, 何东昱, 王晓龙. Si含量对激光熔覆FeCoNiBSiNb非晶合金复合材料力学和摩擦学性能的影响[J]. 材料导报, 2025, 39(12): 24050125-7.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[10] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[11] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[12] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[13] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[14] 傅邦杰, 彭文飞, 林龙飞, 李贺, 邵熠羽, 朱盛明. 差温轧制6063/7072铝合金复合板有限元模拟及翘曲影响因素[J]. 材料导报, 2024, 38(15): 23100223-8.
[15] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed