Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050125-7    https://doi.org/10.11896/cldb.24050125
  金属与金属基复合材料 |
Si含量对激光熔覆FeCoNiBSiNb非晶合金复合材料力学和摩擦学性能的影响
杜娴1, 禹东欣1,2, 柳建1,*, 蔡志海1, 何东昱3, 王晓龙4
1 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
2 江西理工大学机电工程学院,江西 赣州 341000
3 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
4 安徽理工大学机械工程学院,安徽 淮南 232001
Influence of Si Content on the Mechanical and Tribological Properties of Laser Cladding FeCoNiBSiNb Amorphous Alloy Composite Materials
DU Xian1, YU Dongxin1,2, LIU Jian1,*, CAI Zhihai1, HE Dongyu3, WANG Xiaolong4
1 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
2 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
3 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
4 School of Mechanical Engineering, Anhui University of Technology, Huainan 232001, Anhui, China
下载:  全 文 ( PDF ) ( 15969KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调整硅的含量(x=0,1,2,3,4,5,6),采用激光熔覆技术制备了[(Fe0.6Co0.2Ni0.2)0.75-0.03xB0.2Si0.05+0.03x]96Nb4非晶合金复合涂层,并对其微观结构和摩擦学性能进行了研究。此外,还了解了Si对熔覆层的玻璃形成能力(GFA)的影响。结果表明,适当的Si含量可以细化FeCoNiBSiNb激光熔覆层的微观组织,提高其力学性能和摩擦学性能。熔覆层的硬度随Si含量的增加而单调增加,当Si含量为4.8%(原子分数,即x=0)时,涂层的显微硬度较低(734.2HV0.1)。当硅含量为13.44%(原子分数,即x=3)时,涂层的显微硬度最大(1 106HV0.1),而非晶含量和抗压强度先增加后降低。当x=2时,涂层的断裂强度最大(2 880 MPa)。当x>2时,熔覆层的断裂强度随x值的增大而减小。相反,随着Si含量的增加,涂层磨损体积损失先减小后增大。当硅含量为10.56%(原子分数,即x=2)时,熔覆层的非晶含量最高(42%),抗压强度最大(2 880 MPa),且干摩擦性能最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜娴
禹东欣
柳建
蔡志海
何东昱
王晓龙
关键词:  激光熔覆  FeCoNiBSiNb复合涂层  摩擦学性能  Si含量    
Abstract: A series of [(Fe0.6Co0.2Ni0.2)0.75-0.03xB0.2Si0.05+0.03x]96Nb4 amorphous alloy composite coatings were prepared by adjusting the silicon content (x=0, 1, 2, 3, 4, 5, and 6) and their microstructures and tribological properties were investigated by laser cladding technique. Additionally, the effect of Si on the glass forming ability (GFA) of the layers was understood. Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties. The hardness of the coating layer increases monotonically with the Si content. At the Si content of 4.8at% (x=0), the coating layer exhibits a relatively low hardness (734.2HV0.1). Conversely, at the silicon content of 13.44at% (x=3), the coating layer exhibits the highest hardness (1 106HV0.1). The non-crystalline content and tensile strength exhibit an initial increase, followed by a subsequent decrease. At x=2, the coating exhibits its maximum fracture strength (2 880 MPa). However, when x>2, the fracture strength of the coating decreases with an increase in x. Conversely, with an increase in Si content, the wear volume loss initially decreases and then increases. At a Si content of 10.56at% (x=2), the coating exhibits the highest non-crystalline content (42%), the highest tensile strength (2 880 MPa), and the most favorable dry friction performance.
Key words:  laser cladding    FeCoNiBSiNb composite layer    tribological property    Si content
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金面上项目(52275228);装发教育部联合基金青年人才项目(8091B032110);国家自然科学基金青年项目(52105234;52205242)
通讯作者:  *Jian Liu,corresponding author,associate researcher,postdoctoral fellow and master’s supervisor of the National Engineering Research Center for Remanufacturing of Mechanical Products,Army Armored Corps College.Currently,he is mainly engaged in the research of high-energy beam additive manufacturing/remanufacturing,heterogeneous welding,and high-entropy alloy molding.xbdliu5899@163.com   
作者简介:  Xian Du,associate researcher,Department of Equipment Security and Remanufacturing,Army Armored Corps College.Currently,she is mainly engaged in the research of equipment additive manufacturing and anti-fatigue strengthening.
引用本文:    
杜娴, 禹东欣, 柳建, 蔡志海, 何东昱, 王晓龙. Si含量对激光熔覆FeCoNiBSiNb非晶合金复合材料力学和摩擦学性能的影响[J]. 材料导报, 2025, 39(12): 24050125-7.
DU Xian, YU Dongxin, LIU Jian, CAI Zhihai, HE Dongyu, WANG Xiaolong. Influence of Si Content on the Mechanical and Tribological Properties of Laser Cladding FeCoNiBSiNb Amorphous Alloy Composite Materials. Materials Reports, 2025, 39(12): 24050125-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050125  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050125
1 Wang W H. Progress in Phyics, 2013, 33, 177.
2 Ma J, Zhang X Y, Wang D P, et al. Applied Physics Letters, 2014, 104(17), 173701.
3 Suryanarayana C, Inoue A. International Materials Reviews, 2013, 58(3), 131.
4 Zhao Y C, Mao X J, Li W S, et al. Acta Metallurgica Sinica, 2019, 56(5), 715.
5 Zhou J, You J, Qiu K. Journal of Applied Physics, 2022, 132(4), 040702.
6 Naka M, Hashimoto K, Masumoto T. Journal of the Japan Institute of Metals and Materials, 1974, 26(9), 93.
7 Yoshizawa Y, Oguma S, Yamauchi K. Journal of Applied Physics, 1988, 64(10), 6044.
8 Suzuki K, Kataoka N, Inoue A, et al. Materials Transactions Jim, 1990, 31(8), 743.
9 Ogawa Y, Naoe M, Yoshizawa Y, et al. Journal of Magnetism and Magnetic Materials, 2006, 304(2), e675.
10 Makino A, Men H, Kubota T, et al. IEEE Transactions on Magnetics, 2009, 45(10), 4302.
11 Shi L, Hu X, Li Y, et al. Intermetallics, 2021, 131, 107116.
12 Shi L, Wang K, Yao K. Journal of Non-crystalline Solids, 2020, 528, 119710.
13 Pang S J, Zhang T, Asami K, et al. Corrosion Science, 2002, 44(8), 1847.
14 Archer M D, Corke C C, Harji B H. Electrochimica Acta, 1987, 32(1), 13.
15 Wang S L, Yi S. Intermetallics, 2010, 18(10), 1950.
16 López M F, Escudero M L, Vida E, et al. Electrochimica Acta, 1997, 42(4), 659.
17 Inoue A, Shen B L, Chang C T. Acta Materialia, 2004, 52(14), 4093.
18 Mizushima T, Koshiba H, Naito Y, et al. Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 146.
19 Shinomiya H, Kato Z, Enari K, et al. ECS Transactions, 2009, 16(32), 9.
20 Duarte M J, Klemm J, Klemm S O, et al. Science, 2013, 341(6144), 372.
21 Yang W, Liu H, Zhao Y, et al. Scientific Reports, 2014, 4(1), 6233.
22 Wang Q, Chen M, Lin P, et al. Journal of Materials Chemistry A, 2018, 6(23), 10686.
23 Meghwal A, Schulz C, Hall C, et al. Surface and Coatings Technology, 2023, 475, 130114.
24 Wang Q, Bai X, Sun B, et al. Surface and Coatings Technology, 2021, 405, 126570.
25 Takeuchi A, Inoue A. Materials Transactions, 2005, 46, 2817.
26 Zhang Y H, Ye C Y, Shen Y P, et al. Journal of Alloys and Compounds, 2020, 812, 152022.
27 Wang W H. Advanced Materials, 2009, 21(45), 4524.
28 Luo F, Shi W, Xiong Z, et al. Journal of Non-crystalline Solids, 2024, 624, 122732.
[1] 俞伟元, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇. 高速激光熔覆Fe基非晶涂层裂纹及组织分析[J]. 材料导报, 2025, 39(7): 24030107-6.
[2] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[3] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[6] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[7] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[8] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[9] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[10] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[11] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[12] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[13] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[14] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[15] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed