Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25030074-11    https://doi.org/10.11896/cldb.25030074
  空间润滑材料 |
纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展
张育新1,*, 邱慕寒2, 李默涵1
1 重庆大学材料科学与工程学院,重庆 400044
2 重庆大学本科生院,重庆 400044
Research Progress of Nanomaterial-Composite Hydrogel and Aerogel in Triboelectric Nanogenerators
ZHANG Yuxin1,*, QIU Muhan2, LI Mohan1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Undergraduate School, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 29644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 摩擦电纳米发电机(TENG)自2012年由王中林团队提出以来,其因成本优势和广阔应用前景,在能源领域备受关注。TENG的电极系统作为能量转换核心,由摩擦层和导电传输层组成。近年研究聚焦纳米材料等新型电极材料以提升输出性能,但是目前研究较为分散,缺乏系统总结。本文基于TENG工作原理,系统总结了纳米材料、水凝胶及气凝胶等复合材料的性能优势及在TENG中的应用,通过对比不同策略对导电性、比表面积等参数的提升效果,提出优化水凝胶及气凝胶型TENG性能的关键方向,并展望未来发展趋势,旨在为研究者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张育新
邱慕寒
李默涵
关键词:  水凝胶  气凝胶  摩擦电纳米发电机  纳米材料  电极材料    
Abstract: Since Zhonglin Wang′s team proposed the triboelectric nanogenerator (TENG) in 2012, it has garnered significant attention in the energy field due to its cost advantages and broad application prospects. The electrode system of TENG, serving as the core for energy conversion, consists of a triboelectric layer and a conductive transport layer. Recent studies have focused on novel electrode materials, such as nanomaterials, to enhance output performance. However, current research remains fragmented, lacking systematic reviews. This paper systematically reviews the performance advantages of nanomaterials, hydrogels, aerogels, and other composite materials in TENG applications based on its working principles. By comparing strategies to improve conductivity, specific surface area, and surface polarity, key directions for optimizing the perfor-mance of hydrogel/aerogel-based TENGs are proposed. Thispaper aims to provide a comprehensive reference for researchers and highlights future research trends in the field.
Key words:  hydrogel    aerogel    triboelectric nanogenerator    nanomaterials    electrode materials
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52378217)
通讯作者:  张育新,博士,重庆大学材料科学与工程学院教授、博士研究生导师。主要从事无机非金属复合材料和硅藻基纳米材料的设计与合成方面的研究,涵盖自组装结构、水处理、防腐、电极材料和催化剂等方向,应用于新能源、环境、海工与航天等领域。zhangyuxin@cqu.edu.cn   
引用本文:    
张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
ZHANG Yuxin, QIU Muhan, LI Mohan. Research Progress of Nanomaterial-Composite Hydrogel and Aerogel in Triboelectric Nanogenerators. Materials Reports, 2025, 39(15): 25030074-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030074  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25030074
1 Jiang D B, Yuan Y S, Wu J S, et al. Materials Reports, 2019, 33(9), 1483(in Chinese).
姜德彬, 袁云松, 吴俊书, 等. 材料导报, 2019, 33(9), 1483.
2 Jing C, Tnao S R, Fu B, et al. Progress in Materials Science, 2025, 150, 101410.
3 Ding Y, Shi Z Y, Li K L, et al. Crystengcomm, 2024, 27(1), 13.
4 Qin Y, Li K L, Dai X J, et al. Materials Reports, 2023, 37(11), 10(in Chinese).
秦珩, 李凯霖, 戴兴健, 等. 材料导报, 2023, 37(11), 10.
5 Wang Y, Huo W C, Yuan X Y, et al. Acta Phys. -Chim. Sin. 2020, 36(2), 46(in Chinese).
王易, 霍旺晨, 袁小亚, 等. 物理化学学报, 2020, 36(2), 46.
6 Li M H, Liu S P, Cao M M, et al. Tribology International, 2024, 200, 110170.
7 Lu W, Zhang X F, Yin C Q, et al. Langmuir, 2024, 40(15), 8233.
8 Li B, Shao J R, Zheng Z J, et al. Physica Scripta, 2024, 99(11), 115548.
9 Zi Y L, Lin L, Wang J, et al. Advanced Materials, 2015, 27(14), 2340.
10 Lin S, Chen X, Wang Z L. Chemical Reviews, 2022, 122(5), 5209.
11 Wang Z L, Jiang T, Xu L. Nano Energy, 2017, 39, 9.
12 Yong H, Chung J, Choi D, et al. Scientific Reports, 2016, 6, 33977.
13 Wang J X, Ma L L, He J M, et al. Chemical Engineering Journal, 2022, 431, 134002.
14 Liang X, Liu S J, Yang H B, et al. Electronics, 2023, 12(1), 225.
15 Feng H N, Liu C X, Wang W, et al. Nano Energy, 2024, 132, 110365.
16 Wang Z L. Advanced Energy Materials, 2020, 10(17), 2000137.
17 Zhou L N, Song W Z, Sun D J, et al. ACS Applied Electronic Materials, 2022, 5(1), 216.
18 Long K X, Zhang Y Z, Gao X Y, et al. ACS Applied Electronic Materials, 2024, 6(8), 5496.
19 Shi G G, Xiong J M, Wu W J, et al. Materials Today Chemistry, 2024, 40, 137220.
20 Li Z, Li C, Sun W, et al. Acs Applied Materials & Interfaces, 2023, 15(10), 12787.
21 Wang X F, Li X C, Wang B B, et al. Nano Energy, 2024, 130, 157.
22 Xie B C, Ma Y Y, Luo N Z, et al. Nano Energy, 2024, 130, 110095.
23 Zhou Z J, Sun W G, Lv C Z, et al. European Polymer Journal, 2023, 200, 112500.
24 Tan X Q, Huang Z Y, Pei H R, et al. ACS Sensors, 2024, 9(8), 3938.
25 Qu M N, Sun W C, Xue Y Y, et al. Journal of Materials Science-Materials in Electronics, 2022, 33(13), 10611.
26 Huang T C, Long Y, Dong Z L, et al. Advanced Science, 2022, 9(34), 2204519.
27 Wang Z X, Chen C, Fang L, et al. Nano Energy, 2023, 107, 108151.
28 Rajabi-Abhari A, Yoo H, Kim J S, et al. Small, 2024, 20, 2405664.
29 Rezaei S, Omranpour H, Ben Rejeb Z, et al. Journal of Materials Che-mistry C, 2023, 11(43), 15106.
30 Dai N, Zhang Y X, Li K L, et al. Materials Reports, 2022, 36(14), 145(in Chinese).
代楠, 张育新, 李凯霖, 等. 材料导报, 2022, 36(14), 145.
31 Sun J Y, Zhao X H, Illeperuma W R K, et al. Nature, 2012, 489(7414), 133.
32 Laskowski J, Milow B, Ratke L. Journal of Supercritical Fluids, 2015, 106, 93.
33 Wang Z L. Materials Today, 2017, 20(2), 74.
34 Wang Z L. Reports on Progress in Physics, 2021, 84(9), 096502.
35 Fang Z, Chan K H, Lu X, et al. Journal of Materials Chemistry A, 2018, 6(1), 52.
36 Zou Y J, Xu J, Chen K, et al. Advanced Materials Technologies, 2021, 6(3), 2000916.
37 Wu J, Wang X L, Li H Q, et al. Nano Energy, 2018, 48, 607.
38 Shao Y, Feng C P, Deng B W, et al. Nano Energy, 2019, 62, 620.
39 Dong Y, Mallineni S S K, Maleski K, et al. Nano Energy, 2018, 44, 103.
40 Nie S X, Fu Q, Lin X J, et al. Chemical Engineering Journal, 2021, 404, 126512.
41 Wang Z L, Wang A C. Materials Today, 2019, 30, 34.
42 Oguchi T, Tamatani M. Journal of the Electrochemical Society, 1982, 129(8), C338.
43 Niu S, Wang Z L. Nano Energy, 2015, 14, 161.
44 Yang Y, Zhang H L, Chen J, et al. ACS Nano, 2013, 7(8), 7342.
45 Yang Y, Zhou Y S, Zhang H, et al. Advanced Materials, 2013, 25(45), 6594.
46 Haroun A, Tarek M, Mosleh M, et al. Nanomaterials, 2022, 12(17), 2960.
47 Zeng Q X, Wu Y, Tang Q, et al. Nano Energy, 2020, 70, 104524.
48 Meng J, Lan C, Pan C, et al. Nano Energy, 2025, 133, 110395.
49 Dharmasena R, Jayawardena K, Mills C A, et al. Energy & Environmental Science, 2017, 10(8), 1801.
50 Yang Y, Zhao Y J. Materials & Design, 2024, 242, 112991.
51 Ge X H, Mao M R, Yu H R, et al. Nano Energy, 2024, 131, 110289.
52 Wang S T, Gao J S, Lu F Q, et al. Nano Energy, 2023, 108, 108230.
53 Wang Y, Liu W B, Yang Y, et al. Polymer Materials Science and Engineering, 2024, 40(5), 125.
王洋, 刘文博, 杨宇, 等. 高分子材料科学与工程, 2024, 40(5), 125.
54 Zhu M M, Wang Z, Zhou H Y, et al. Journal of Forestry Engineering, 2024, 9(6), 114(in Chinese).
朱苗苗, 王志, 周航宇, 等. 林业工程学报, 2024, 9(6), 114.
55 Torres F G, Troncoso O P, De-La-Torre G E. International Journal of Energy Research, 2022, 46(5), 5603.
56 Li G X, Li L W, Zhang P P, et al. RSC Advances, 2021, 11(28), 17437.
57 Sheng F F, Yi J, Shen S, et al. ACS Applied Materials & Interfaces, 2021, 13(37), 44868.
58 Li Y H, Ren P G, Sun Z F, et al. Journal of Colloid and Interface Science, 2024, 669, 248.
59 Zhang Y X, Zou J, Wang S J, et al. Composites Part B-Engineering, 2024, 272, 111191.
60 Jiang W J, Liu J Y, Zhang H S, et al. Chemical Engineering Journal, 2024, 483, 149117.
61 Rahman M T, Rahman M S, Kumar H, et al. Advanced Functional Materials, 2023, 33(48), 2303471.
62 Zhao L L, Fang C Y, Qin B Y, et al. Nano Energy, 2024, 127, 109772.
63 Luu T T, Le H A T, Ra Y, et al. Composites Part B-Engineering, 2025, 291, 111997.
64 Feng C, Cai L F, Zhu G Y, et al. Journal of Colloid and Interface Science, 2025, 677, 692.
65 Yang Q N, Yu M L, Zhang H Y, et al. Nano Energy, 2025, 134, 110530.
66 Jaiswal M, Singh S, Sharma B, et al. Small, 2024, 20(38), 2403699.
67 Qi J B, Wang A C, Yang W F, et al. Nano Energy, 2020, 67, 104206.
68 Kim J N, Lee J, Lee H, et al. Nano Energy, 2021, 82, 105705.
69 Yue J J, Teng Y L, Huang Y, et al. ACS Applied Electronic Materials, 2024, 6(5), 3734.
70 Wang F J, Wang S Y, Liu Y C, et al. Nano Letters, 2024, 24(9), 2861.
71 Zhang Y. Preparation and properties of chitosan-based aerogel film triboelectric materials. Ph. D. Thesis, Guangxi University, China, 2024(in Chinese).
张叶. 壳聚糖基气凝胶膜摩擦电材料的制备及其性能研究. 硕士学位论文, 广西大学, 2024.
72 Saadatnia Z, Mosanenzadeh S G, Li T, et al. Nano Energy, 2019, 65, 104019.
73 Zhang L, Liao Y, Wang Y C, et al. Advanced Functional Materials, 2020, 30(28), 2001763.
74 Luo C, Ma H Z, Yu H, et al. Acs Sustainable Chemistry & Engineering, 2023, 11(25), 9424.
75 Zhao K, Liu C, Shao T, et al. Materials Today Sustainability, 2023, 23, 100476.
76 Mi H Y, Jing X, Meador M A B, et al. ACS Applied Materials & Interfaces, 2018, 10(36), 30596.
77 Mi H Y, Jing X, Zheng Q, et al. Nano Energy, 2018, 48, 327.
78 Cheng Y, Zhu W D, Lu X F, et al. Nano Energy, 2022, 98, 107229.
79 Tan X Q, Wang S T, You Z Y, et al. ACS Materials Letters, 2023, 5(7), 1929.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 王九江, 李大武. 基于纳米荧光碳点可视化显现潜在手印的研究进展[J]. 材料导报, 2025, 39(9): 24020140-13.
[3] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[4] 刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
[5] 董沛, 刘宇欣, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 可生物降解壳聚糖半互穿网络水凝胶的制备及胃滞留应用[J]. 材料导报, 2025, 39(8): 24040064-9.
[6] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[7] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[8] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[9] 蒋力, 唐昭敏, 赵健清, 李世杰, 李昊宇, 杨怡宁, 潘皛, 王新茗. 原位可注射pH/温度双响应载药水凝胶的制备及抗肿瘤应用[J]. 材料导报, 2025, 39(6): 24010129-7.
[10] 谢梦恬, 马雨龙, 孙一榕, 孙海, 许维国, 王国良, 丁建勋. 生物活性水凝胶通过调控细胞行为促进皮肤慢性创面愈合[J]. 材料导报, 2025, 39(5): 24120195-14.
[11] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[12] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[13] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[14] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[15] 郭首政, 邢东. 纳米材料在木材超疏水领域的应用[J]. 材料导报, 2025, 39(14): 24050202-10.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed