Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24110086-5    https://doi.org/10.11896/cldb.24110086
  无机非金属及其复合材料 |
ZrO2添加对六铝酸钙陶瓷微观结构及力学性能的影响
尹雪亮1, 王慧芳1, 杨茜1, 徐磊2,*, 马北越2
1 山西工程技术学院材料科学与工程系,山西 阳泉 045000
2 东北大学冶金学院,沈阳 110819
Optimizing the Microstructure and Mechanical Properties of Calcium Hexaluminate Ceramics by ZrO2 Addition
YIN Xueliang1, WANG Huifang1, YANG Xi1, XU Lei2,*, MA Beiyue2
1 Department of Materials Science and Engineering, Shanxi Institute of Technology, Yangquan 045000, Shanxi, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 19759KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 六铝酸钙因其优异的断裂韧性、化学稳定性及耐高温性能在高温陶瓷及耐火材料领域有着广泛应用。但其各向异性生长会严重影响烧结性能,导致其完全致密化温度往往高于1 750 ℃。针对这一问题,本工作通过添加ZrO2对六铝酸钙单相陶瓷烧结活性进行了优化,并探究了ZrO2添加对其致密化行为、微观结构和力学性能的影响规律及作用机理。研究发现,板片状晶粒的形成是六铝酸钙陶瓷难烧结的主要原因,1 600 ℃烧成后显气孔率依然高达26.7%。Zr4+能替代Al3+均匀固溶在六铝酸钙晶粒中,导致其烧结活性和晶粒生长速率显著提高。此外,晶粒的各向异性生长也由于固溶反应而受到抑制,晶粒尺寸纵横比显著下降,从而加快了板片状结构两侧离子的层间扩散,导致陶瓷结构均匀性、致密度及力学性能大幅提升,微观结构中仅残留有少量微气孔。当ZrO2添加量为3%(质量分数)时,六铝酸钙陶瓷的相对密度由71.5%提升至93.7%,抗折强度和断裂韧性分别由128 MPa和3.5 MPa·m1/2增加至228 MPa和5.6 MPa·m1/2,分别提升了78%和60%,1 550 ℃下稳定蠕变阶段的蠕变应变速率下降约1个数量级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹雪亮
王慧芳
杨茜
徐磊
马北越
关键词:  六铝酸钙陶瓷  ZrO2  微观结构  力学性能  烧结行为    
Abstract: Calcium hexaluminate(CaAl12O19) is widely used in high-temperature ceramics and refractories due to its excellent fracture toughness, che-mical stability, and high refractoriness. However, its anisotropic grain growth adversely affects its sintering behavior, requiring temperatures of over 1 750 ℃ for full densification. This work investigated the influence of ZrO2 addition on the densification, microstructure, and mechanical properties of CaAl12O19 ceramics. The poor sinterability of calcium hexaluminate ceramics is primarily attributed to the formation of plate-like CaAl12O19 crystals, which results in an apparent porosity of 26.7% after sintering at 1 600 ℃. The added Zr4+ can be uniformly dissolved in the CaAl12O19 grains by substituting Al3+ in the mirror planes, thereby enhancing the sintering activity and grain growth. Additionally, the formation of substitutional solid solutions effectively suppresses anisotropic crystal growth and reduces the aspect ratio, accelerating the ion diffusion along both sides of the plate-like grains. The relative density increases from 71.5% to 93.7% with the addition of 3wt% ZrO2, while the homogeneity of the microstructure is significantly improved, with only a few residual micro-pores. These changes lead to a substantial enhancement of the mechanical properties of calcium hexaluminate ceramics, with the flexural strength and fracture toughness increasing from 128 MPa and 3.5 MPa·m1/2 to 228 MPa and 5.6 MPa·m1/2, respectively. Furthermore, a decrease in the creep rate by one order of magnitude is achieved at 1 550 ℃ by ZrO2 addition.
Key words:  CaAl12O19 ceramics    ZrO2    microstructure    mechanical property    sintering behavior
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TQ175.1  
基金资助: 国家自然科学基金(51804075);中国博士后科学基金(2021MD703794)
通讯作者:  徐磊,博士,东北大学冶金学院副教授、博士研究生导师。目前主要从事高温陶瓷及耐火材料、冶金二次资源高效资源化利用及碳捕集与碳封存等方面的研究工作。xul@smm.neu.edu.cn   
作者简介:  尹雪亮,博士,山西工程技术学院材料科学与工程系副教授、硕士研究生导师。目前主要从事高温陶瓷及耐火材料、冶金二次资源高效资源化利用等方面的研究工作。
引用本文:    
尹雪亮, 王慧芳, 杨茜, 徐磊, 马北越. ZrO2添加对六铝酸钙陶瓷微观结构及力学性能的影响[J]. 材料导报, 2025, 39(15): 24110086-5.
YIN Xueliang, WANG Huifang, YANG Xi, XU Lei, MA Beiyue. Optimizing the Microstructure and Mechanical Properties of Calcium Hexaluminate Ceramics by ZrO2 Addition. Materials Reports, 2025, 39(15): 24110086-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110086  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24110086
1 Li L, Yan Y, Hu Z, et al. Journal of the Chinese Ceramic Society, 2015, 43(3), 304 (in Chinese).
李利平, 严云, 胡志华, 等. 硅酸盐学报, 2015, 43(3), 304.
2 De Aza A H, Iglesias J E, Pena P, et al. Journal of the American Ceramic Society, 2000, 83(4), 919.
3 Liu Y, Wang E, Xu L, et al. International Journal of Minerals Metallurgy and Materials, 2023, 30(4), 756.
4 Li S, Chen D, Fu L, et al. Ceramics International, 2023, 49(10), 15787.
5 Dong J, Gu H, Huang A, et al. Journal of Iron and Steel Research, 2022, 34(8), 825 (in Chinese).
董健雄, 顾华志, 黄奥, 等. 钢铁研究学报, 2022, 34(8), 825.
6 Li Z, Du R, Fu L, et al. Journal of the American Ceramic Society, 2023, 106(11), 7057.
7 Cinibulk M K. Journal of the European Ceramic Society, 2000, 20(5), 569.
8 Dominguez C, Chevalier J, Torrecillas R, et al. Journal of the European Ceramic Society, 2001, 21(3), 381.
9 An L, Chan H M, Soni K K. Journal of Materials Science, 1996, 31(12), 3223.
10 Asmi D, Low I M. Ceramics International, 2008, 34(2), 311.
11 Asmi D, Low I M, Kennedy S, et al. Materials Letters, 1999, 40(2), 96.
12 Sánchez-Herencia A J, Moreno R, Baudin C. Journal of the European Ceramic Society, 2000, 20(14), 2575.
13 Cui K, Fu T, Zhang Y, et al. Journal of the European Ceramic Society, 2021, 41(15), 7935.
14 Li W, Feng X, Guo H, et al. Journal of the European Ceramic Society, 2024, 44(12), 7201.
15 Sakihama J, Salomão R. Ceramics International, 2024, 50(3), 4875.
16 Bae H M, Tsabit A M, Ryu S S, et al. Journal of the Korean Ceramic Society, 2024, 61(1), 104.
17 Kang G, Liu X, Wu R, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(3), 1038 (in Chinese).
康国卫, 刘馨, 吴然, 等. 硅酸盐通报, 2021, 40(3), 1038.
18 Yuan L, Yao X, Yan Z, et al. Journal of the Australian Ceramic Society, 2022, 58(5), 1701.
19 Suzuki Y, Nishihashi K. Ceramics International, 2023, 49(18), 29427.
20 Xu L, Wang E, Hou X, et al. Journal of the European Ceramic Society, 2020, 40(15), 6155.
21 Wen T, Jin Y, Yu J, et al. Construction and Building Materials, 2023, 385, 131534.
22 Cui S, Wang Q, Zhou Y, et al. Ceramics International, 2021, 47(24), 35302.
23 De la Iglesia P G, García-Moreno O, Menéndez J L, et al. Journal of Materials Research, 2023, 38(4), 1129.
24 Xu L, Chen M, Jin L, et al. Journal of the American Ceramic Society, 2015, 98(12), 4117.
25 Xu L. Study on the sintering behavior and properties of Al2O3-MgO-CaO system refractories. Ph. D. Thesis, Northeastern University, China, 2016 (in Chinese).
徐磊. Al2O3-MgO-CaO系耐火材料烧结行为及其性能的研究. 博士学位论文, 东北大学, 2016.
26 Rahaman M N. Ceramic processing and sintering, 2nd ed, Marcel Dekker Inc, USA, 2003, pp. 253.
27 Doyle P M, Schofield P F, Berry A J, et al. American Mineralogist, 2014, 99(7), 1369.
28 Rice R W. Key Engineering Materials, 1996, 115, 1.
29 Xu L, Liu Y, Chen M, et al. Ceramics International, 2022, 48(15), 22560.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[3] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[4] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[5] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[8] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[9] CHEN Zhenshan, WU Yusheng, PENG Pengfei, HUANG Zhou, CHEN Meihong, CAI Boqun. Effect of Fluoro-aluminum Complexes on the Properties of Aluminum SulfateType Accelerator[J]. Materials Reports, 2020, 34(Z1): 178 -180 .
[10] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed