Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24050205-8    https://doi.org/10.11896/cldb.24050205
  金属与金属基复合材料 |
铜基催化剂在电催化硝酸根还原制氨中的应用
梁彩凤1,2,†, 赵港1,2,†, 吴琪1,2,*
1 西藏大学理学院,拉萨 850000
2 西藏大学西藏自治区高原制供氧与人居环境重点实验室,拉萨 850000
Application of Copper-based Catalysts in Electrocatalytic Nitrate Reduction to Ammonia
LIANG Caifeng1,2,†, ZHAO Gang1,2,†, WU Qi1,2,*
1 College of Science, Xizang University, Lhasa 850000, China
2 Tibet Key Laboratory of Plateau Oxygen and Living Environment, Xizang University, Lhasa 850000, China
下载:  全 文 ( PDF ) ( 19616KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地下水硝酸盐污染成为一个关键的环境问题,对人类社会的发展造成严重威胁。电催化硝酸盐还原制氨法(NO3RR),被认为是去除各类废水中的硝酸盐有害物质并将其转化为氨的最有效途径之一,但其催化剂的研究极具挑战性。近期,Cu基催化剂因其低成本、高活性以及能有效抑制析氢副反应等特性,在促进NO3RR性能方面表现出很高的硝酸盐转化效率、氨选择性和法拉第效率。本文主要综述了Cu的金属催化剂、单原子催化剂、合金催化剂以及化合物催化剂(氧化物、氢氧化物)在NO3RR中的最新进展,详细介绍了各种改性手段的利弊以及NO3RR的转化机制,并对该领域未来的发展方向、面临的挑战和机遇进行了简要概述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁彩凤
赵港
吴琪
关键词:  电催化  硝酸盐去除  氨生产  铜基催化剂    
Abstract: Nitrate contamination of groundwater has become a critical environmental issue that poses a serious threat to the development of human society. Electrocatalytic nitrate reduction to ammonia (NO3RR), is considered as one of the most effective ways to remove harmful nitrate substances from various types of wastewater and convert them to advantageous ammonia, but the research of the electrocatalysts are very challen-ging. Recently, Cu-based catalysts have shown high nitrate conversion efficiency, ammonia selectivity, and Faraday efficiency in promoting NO3RR performance due to their low cost, high activity, and ability to effectively inhibit Hydrogen evolution reaction, etc. Here we reviews the recent advances in metal catalysts for Cu, relevant single-atom, alloy, and compounds (oxides, hydroxides) catalysts in NO3RR, details the advantages and disadvantages of the various modifications as well as the conversion mechanism of NO3RR, and provides a brief overview of the future directions, challenges, and opportunities in this field.
Key words:  electrocatalysis    nitrate removal    ammonia production    copper-based catalysts
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TQ15  
  O41  
基金资助: 基金项目:国家自然科学基金(22168036);西藏自治区科技计划项目(XZ202201YD0020C);西藏自治区自然科学基金项目重点项目(XZ202301ZR0026G)
通讯作者:  吴琪,博士,国家海外高层次人才、西藏大学理学院特聘研究员、硕士研究生导师。研究方向主要围绕计算物理和计算材料科学领域开展前瞻性、原创性问题研究,具体包括低维纳米材料的模拟与设计、高原特色环境与材料理论计算的研究工作,专注于电化学析氢制氧以及太阳能电解水制氢制氧理论研究。wuqi_zangda@163.com   
作者简介:  梁彩凤,西藏大学理学院硕士研究生,在吴琪特聘研究员的指导下进行研究。目前主要研究领域为电催化。赵港,西藏大学理学院硕士研究生,在吴琪特聘研究员的指导下进行研究。目前主要研究领域为电催化。共同第一作者
引用本文:    
梁彩凤, 赵港, 吴琪. 铜基催化剂在电催化硝酸根还原制氨中的应用[J]. 材料导报, 2025, 39(15): 24050205-8.
LIANG Caifeng, ZHAO Gang, WU Qi. Application of Copper-based Catalysts in Electrocatalytic Nitrate Reduction to Ammonia. Materials Reports, 2025, 39(15): 24050205-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050205  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24050205
1 Liu H, Lang X, Zhu C, et al. Angewandte Chemie International Edition, 2022, 61(23), e202202556.
2 Lei F, Zhang Y, Xu M, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(24), 9057.
3 Gao Y, Wang R, Li Y, et al. Chemical Engineering Journal, 2023, 474(15), 145546.
4 He X, Liu H, Zhao W, et al. Separation and Purification Technology, 2024, 329, 125129.
5 Martín A J, Shinagawa T, Pérez-Ramírez J. Chem, 2019, 5(2), 263.
6 Liu L, Zheng S. ChemCatChem, 2024, 16, e202301641.
7 Jin D, Chen A, Lin B L. Journal of the American Chemical Society, 2024, 146(18), 12320.
8 Kong Y, Li Y, Sang X, et al. Advanced Materials, 2022, 34(2), 2103548.
9 Xu Y, Wang M, Ren K, et al. Journal of Materials Chemistry A, 2021, 9(30), 16411.
10 Wu J, Li J H, Yu Y X. The Journal of Physical Chemistry Letters, 2021, 12(16), 3968.
11 Yu Y, Wang C, Yu Y, et al. Science China Chemistry, 2020, 63(10), 1469.
12 Ye S, Chen Z, Zhang G, et al. Energy & Environmental Science, 2022, 15(2), 760.
13 Wang Y, Wang C, Li M, et al. Chem Soc Rev, 2021, 50(12), 6720.
14 Theerthagiri J, Park J, Das H T, et al. Environmental Chemistry Letters, 2022, 20(5), 2929.
15 Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Applied Catalysis B:Environmental, 2018, 236.
16 Ren Z, Shi K, Feng X. ACS Energy Letters, 2023, 8(9), 3658.
17 Gu Z, Zhang Y, Wei X, et al. Advanced Materials, 2023, 35(48), 2303107.
18 Mcenaney J M, Blair S J, Nielander A C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(7), 2672.
19 Chen M, Zhuang S, Cheng J, et al. ACS Applied Materials & Interfaces, 2023, 15(13), 16680.
20 Liu M J, Guo J, Hoffman A S, et al. ECS Meeting Abstracts, 2023, MA2023-01(47), 2516.
21 Jin T, Wang J, Gong Y, et al. Chem Catalysis, 2023, 3(1), 100477.
22 Xu H, Wang X, Zhang Y, et al. Environmental Science & Technology, 2023, 57(37), 14091.
23 Zhang G, Wang G, Wan Y, et al. ACS Nano, 2023, 17(21), 21328.
24 Song Q, Li M, Hou X, et al. Applied Catalysis B:Environmental, 2022, 317, 121721.
25 Deng Z, Ma C, Li Z, et al. ACS Applied Materials & Interfaces, 2022, 14(41), 46595.
26 Liu M J, Miller D, Tarpeh W A. ECS Meeting Abstracts, 2023, MA2023-01(50), 2574.
27 Wang Y, Zhang W, Wen W, et al. Advanced Functional Materials, 2023, 33(46), 2302651.
28 Chen H, Zhang Z, Li Y, et al. Chemical Engineering Journal, 2024, 17, 481.
29 Hu T, Wang C, Wang M, et al. ASC Catalysis, 2021, 11(23), 14417.
30 Wei M, Li S, Wang X, et al. Advanced Energy and Sustainability Research, 2023, 5(1), 202300173.
31 Huang K, Tang K, Wang M, et al. Advanced Functional Materials, 2024, 34(24), 2315324.
32 Yu Z, Gu M, Wang Y, et al. Advanced Energy and Sustainability Research, 2024, 5(5), 2300284.
33 Karamad M, Goncalves T J, Jimenez-Villegas S, et al. Faraday Discussions, 2023, 243, 502.
34 Ye J, Yang Y, Teng M, et al. Dalton Transactions, 2024, 53(4), 1673.
35 Li Y, Wang C, Yang L, et al. Advanced Energy Materials, 2024, 14(7), 2303863.
36 Luo W, Guo Z, Ye L, et al. Small, 2024, 20(30), 2311336.
37 Pérez-Gallent E, Figueiredo M C, Katsounaros I, et al. Electrochimica Acta, 2017, 227.
38 Zhang X, Liu X, Huang Z F, et al. ACS Catalysis, 2023, 13(22), 14670.
39 Li C, Liu S, Xu Y, et al. Nanoscale, 2022, 14(34), 12332.
40 Xue Y, Yu Q, Ma Q, et al. Environmental Science & Technology, 2022, 56(20), 14797.
41 Liu Y, Ma J, Huang S, et al. Nano Energy, 2023, 117, 108840.
42 Fang J Y, Zheng Q Z, Lou Y Y, et al. Nature Communications, 2022, 13(1), 7899.
43 Zhang Y, Chen X, Wang W, et al. Applied Catalysis B:Environmental, 2022, 310, 121346.
44 Du Z, Yang K, Du H, et al. ACS Applied Materials & Interfaces, 2023, 15(4), 5172.
45 Yin D, Chen D, Zhang Y, et al. Advanced Functional Materials, 2023, 33(50), 2303803.
46 Shi Y, Li Y, Li R, et al. Chemical Engineering Journal, 2024, 479, 147574.
47 Wang W, Chen J, Tse E C M. Journal of the American Chemical Society, 2023, 145(49), 26678.
48 Lim J, Liu C Y, Park J, et al. ACS Catalysis, 2021, 11(12), 7568.
49 Wang Y, Qin X, Shao M. Journal of Catalysis, 2021, 400, 62.
50 Jiang H, Chen G F, Savateev O, et al. Angewandte Chemie International Edition, 2023, 62(13), e202305695.
51 Wu T, Kong X, Tong S, et al. Applied Surface Science, 2019, 489, 321.
52 Çirmi D, Aydön R, Köleli F. Journal of Electroanalytical Chemistry, 2015, 736, 101.
53 Song Z, Liu Y, Zhong Y, et al. Advanced Materials, 2022, 34(36), 2204306.
54 Zhu T, Chen Q, Liao P, et al. Small, 2020, 16(49), 2004526.
55 Leverett J, Tran-Phu T, Yuwono J A, et al. Advanced Energy Materials, 2022, 12(32), 2201500.
56 Zhu T, Chen Q, Liao P, et al. Small, 2020, 16(49), 2004526.
57 Zheng X, Yan Y, Li X, et al. Journal of Hazardous Materials, 2023, 446, 130679.
58 Murphy E, Liu Y, Matanovic I, et al. ACS Catalysis, 2022, 12(11), 6651.
59 Li X, Guo N, Chen Z, et al. Advanced Functional Materials, 2022, 32(25), 2200933.
60 Yao K, Fang Z, Yan W, et al. Chemical Communications, 2024, 60(20), 2756.
61 Fu W, Du Y, Jing J, et al. Applied Catalysis B:Environmental, 2023, 324, 122201.
62 Zhang M, Zhang Z, Zhang S, et al. ACS Catalysis, 2024, 14(14), 10437.
63 Wang F, Xiao L, Chen J, et al. ChemSusChem, 2020, 13(21), 5711.
64 Geng J, Ji S. Nano Research, 2024, 17(6), 4898.
65 Karmakar A, Karthick K, Sankar S S, et al. Journal of Materials Che-mistry A, 2021, 9(3), 1314.
66 Feng X, Jiao Q, Chen W, et al. Applied Catalysis B:Environmental, 2021, 286, 119869.
[1] 苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
[2] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[3] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[4] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[5] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[8] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[9] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[10] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[11] 张华, 马帅帅, 张甜, 罗毅, 吴文洁, 任晓辉, 刘涛, 倪红卫. 基于高磷铁矿制备Fe-P合金催化剂用于高效全解水反应[J]. 材料导报, 2024, 38(15): 23050039-5.
[12] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[13] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[14] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[15] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed