Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24060001-6    https://doi.org/10.11896/cldb.24060001
  无机非金属及其复合材料 |
碱矿渣/粉煤灰基纤维增强复合材料的抗冻性能
阚黎黎*, 戴伟, 甘元巧, 戴澜青
上海理工大学环境与建筑学院,上海 200093
Frost Resistance Properties of Fiber Reinforced Alkali-Activated Slag/Fly Ash Composites
KAN Lili*, DAI Wei, GAN Yuanqiao, DAI Lanqing
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
下载:  全 文 ( PDF ) ( 16600KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维增强碱激发复合材料具有低碳环保、高延性、高耐久性等独特性能,在抗震、抗腐蚀、抗冻等多种工程领域拥有广阔的发展前景。常规的碱激发复合材料的抗冻性研究都是基于未裂的完整试件,而季节性冻土地区气候条件恶劣,极易造成混凝土开裂。鉴于此,本工作研究了预损和未损碱矿渣/粉煤灰基纤维增强复合材料(AASFC)在氯盐和水环境下的抗冻性能。分析了经冻融循环后材料的抗压强度、相对质量、氯离子侵蚀程度及扩散系数、微观结构、截面孔结构和可持续性。结果表明:AASFC具有良好的抗冻性,预损试件在水环境和氯盐溶液中经300次冻融循环后抗压强度分别仅下降14.3%和16.6%,质量损失率仅为5.75%和4.9%;预损试件的氯离子渗透深度和扩散系数均较小;不同冻融环境下预损试件的表观孔隙率均呈现先增加后下降的趋势,且氯盐溶液中的孔径更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阚黎黎
戴伟
甘元巧
戴澜青
关键词:  碱激发复合材料  冻融循环  氯盐  预损  孔隙结构    
Abstract: Fiber reinforcedalkali-activated composites has unique properties such as low carbon environmental protection, high ductility and high durability, and has broad development prospects in various engineering fields such as earthquake resistance, corrosion resistance and frost resis-tance. Conventional research on frost resistance of this material is mainly based on uncracked intact specimens. However, the climatic conditions in seasonally freeze thawing areas make service concrete more likely to crack. In view of this, the frost resistance properties of pre-damaged and un-damaged alkali-activated slag/fly ash composites (AASFC) in chlorine solution and water environment were studied here. The compressive strength, relative mass, chloride ion erosion degree, chloride ion diffusion coefficient, microstructure, sectional structure and sustainability of the specimens after freeze-thaw cycles were analyzed. The results show that AASFC has a good frost resistance. After 300 freeze-thaw cycles in water environment and chloride solution, the compressive strength of pre-damaged samples only decreases by 14.3% and 16.6%, and the mass loss rate is only 5.75% and 4.9%. The chloride ion penetration depth and diffusion coefficient of the pre-damaged samples are small. Under different freeze-thaw conditions, the apparent porosity of pre-damaged sample increases first and then decreases, and the pore diameter in chloride solution is larger.
Key words:  alkali activated composites    freeze-thaw cycle    chlorine solution    pre-damaged    pore structure
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TU526  
基金资助: 上海市自然基金(23ZR1444000)
通讯作者:  阚黎黎,博士,上海理工大学环境与建筑学院土木系副教授、硕士研究生导师。研究方向包括纤维混凝土、碱激发胶凝材料、低碳高性能土木工程材料、固废处理处置及资源化综合利用等。kanlili1@163.com   
引用本文:    
阚黎黎, 戴伟, 甘元巧, 戴澜青. 碱矿渣/粉煤灰基纤维增强复合材料的抗冻性能[J]. 材料导报, 2025, 39(15): 24060001-6.
KAN Lili, DAI Wei, GAN Yuanqiao, DAI Lanqing. Frost Resistance Properties of Fiber Reinforced Alkali-Activated Slag/Fly Ash Composites. Materials Reports, 2025, 39(15): 24060001-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060001  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24060001
1 Wang F, Ma J X, Ding Y, et al. Construction and Building Materials, 2024, 411, 134626.
2 Miraki H, Shariatmadari N, Ghadir P, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2), 576.
3 Gomaa E Y, Gheni A A, ElGawady M A. American Concrete Institute, 2019, 334, 185.
4 Coppola L, Coffetti D, Crotti E, et al. Sustainability, 2020, 12(9), 3561.
5 Wang F, Yu J T, Ding Y, et al. Journal of Cleaner Production, 2024, 449, 141570.
6 Rodrigue A, Duchesne J, Fournier B, et al. ACI Materials Journal, 2022, 119(3), 3.
7 Fan J C, Zhang B. Construction and Building Materials, 2021, 300, 124334.
8 Abdollahnejad Z, Mastail M, Woof B, et al. Construction and Building Materials, 2020, 241, 118129.
9 Tekle B H, Ly T V, Hertwig L, et al. Structural Concrete, 2023, 24(3), 4286.
10 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard test method for mechanical properties and durability of ordinary concrete:GB/T 50082-2009. China Architecture & Building Press, 2009(in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土力学性能及耐久性能试验方法标准:GB/T 50082-2009. 中国建筑工业出版社, 2009.
11 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for test of chloride ion content in concrete:JGJ/T 322-2013, China Architecture & Building Press, 2013(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土中氯离子含量检测技术规程:JGJ/T 322-2013, 中国建筑工业出版社, 2013.
12 Sun J Y. Study on salt-freezing durability of concrete after pre-loading. Master's Thesis, Shenyang University of Technology, China, 2021(in Chinese).
孙佳媛. 预加载后的混凝土抗盐冻耐久性研究. 硕士学位论文, 沈阳工业大学, 2021.
13 Mandal A K. Astm, DOI:10. 1520/C0020-00R10.
14 Pleau R, Pigeon M, Laurencot J L. Cement and Concrete Composites, 2001, 23(2-3), 237.
15 Aygormez Y, Canpolat O, AI-mashhadani M M, et al. Construction and Building Materials, 2020, 235, 117502.
16 Kuranli O F, Uysal M, Canpolat O. European Journal of Environmental and Civil Engineering, 2022, 26(16), 8390.
17 Zhang G, Yang H L, Ju C, et al. Journal of Cleaner Production, 2020, 228, 120592.
18 An M Z, Wang Y, Yu Z R. Construction and Building Materials, 2019, 198, 546.
19 Aiken T A, Kwasny J, Sha W, et al. Construction and Building Materials, 2021, 301, 124330.
20 Zhao N, Wang S L, Quan X Y, et al. Ocean Engineering, 2021, 238, 109734.
21 Lee N K, Lee H K. Cement and Concrete Composites, 2016, 72, 168.
22 Ismail I, Bernal S A, Provis J L, et al. Construction and Building Materials, 2013, 48, 1187.
23 Zhao R D, Yuan Y, Cheng Z Q, et al. Construction and Building Materials, 2019, 222, 474.
24 Khan H A, Castel A, Khan M S H. Corrosion Science, 2020, 168, 108586.
25 Wang S, Li V C. ACI Materials Journal, 2007, 104(3), 233.
26 Deng B Y, Li L Z, Tan D, et al. Cement and Concrete Composites, 2023, 136, 104895.
27 Keoleian G A, Kendall A, Dettling J E, et al. Journal of infrastructure systems, 2005, 11(1), 51.
28 Li H W, Wang R, Wei M W, et al. Construction and Building Materials, 2024, 422, 135796.
29 Nematollahi B, Ranade R, Sanjayan J, et al. Archives of Civil and Mechanical Engineering, 2017, 17, 55.
30 Lao J C, Ma R Y, Xu L Y, et al. Journal of Cleaner Production, 2024, 447, 141182.
31 Zhong H, Zhang M Z. Cement and Concrete Composites, 2021, 122, 104167.
[1] 袁均相, 刘国建, 刘志勇, 佘伟, 张云升. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J]. 材料导报, 2025, 39(8): 24030019-7.
[2] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[3] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[4] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[5] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[6] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[7] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[8] 张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 24030165-13.
[9] 管焓宇, 张登宇, 欧阳金平, 张伟强, 刘志勇. 高性能水性环氧涂层及涂层钢筋应用研究进展[J]. 材料导报, 2025, 39(13): 24080081-10.
[10] 张永成, 曹锋, 郑明杰, 李双营, 欧阳浩. 青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构[J]. 材料导报, 2025, 39(13): 24050241-8.
[11] 陈云, 郑文博, 付前旺. 氯盐环境下钢筋混凝土腐蚀机理及防腐蚀技术研究进展[J]. 材料导报, 2025, 39(11): 24040106-14.
[12] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[15] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed