Simulation of the Effect of Non-uniform Bottom Blowing on the Scrap Melting Behavior in Iron-Carbon Melt
WANG Zhou1,2,*, CHEN Shuang1, MA Zongtao1, ZHANG Tianhao1, LI Jiwen1,2, CHAO Xia3
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China 2 Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023, Henan, China 3 Henan Jiyuan Iron & Steel (Group) Co., Ltd., Jiyuan 454650, Henan, China
Abstract: Scrap is an energy-saving, environmental-friendly and recyclable iron resource, and converter steel making with high scrap ratio is an important way to consume numerous scrap. Striving to develop converter steel making technology with high scrap ratio meets the strategic demand of low-carbon development of China's iron and steel industry under China's carbon peaking and neutrality goals. At present, the rapid melting of scrap is a major application bottleneck for converter steel making with high scrap ratio. Scrap melting is controlled by coupling heat and mass transfer between scrap and bath. Favorable dynamic conditions can be provided for the rapid melting of scrap in iron-carbon bath by optimizing the bottom blowing technology. Therefore, in this work physical and numerical simulation were adopted to investigate the influence of bottom gas flow rate and gas distribution mode on scrap melting. The results showed that whether increasing the gas flow rate or the adopting non-uniform blowing mode can significantly accelerate the scrap melting in bath. When the gas flow rate increases from 160 Nm3/h to 400 Nm3/h, the time for the scrap central temperature rises from 298 K to 1 623 K decreases by 46.00%, the melting time of scrap decreases by 44.44%. Compared with the traditional uniform blowing mode, the melting time of scrap with non-uniform blowing mode (the gas distribution ratio is 2∶1) reduces by 35.19%. This work could provide theoretical basis and data support for rapid melting and efficient utilization of scrap in converter steel making.
汪宙, 陈爽, 马宗涛, 张天豪, 李继文, 晁霞. 非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究[J]. 材料导报, 2025, 39(14): 24060048-8.
WANG Zhou, CHEN Shuang, MA Zongtao, ZHANG Tianhao, LI Jiwen, CHAO Xia. Simulation of the Effect of Non-uniform Bottom Blowing on the Scrap Melting Behavior in Iron-Carbon Melt. Materials Reports, 2025, 39(14): 24060048-8.
1 Tian C J, Zang X M, Zhang L W, et al. Journal of Iron and Steel Research, DOI:10. 13228/j. boyuan. issn1001-0963. 20230273 (in Chinese). 田春健, 臧喜民, 张利武, 等. 钢铁研究学报, DOI:10. 13228/j. boyuan. issn1001-0963. 20230273. 2 Bu Q C, Lv J B, Li P F, et al. China Metallurgy, 2016, 26(10), 45 (in Chinese). 卜庆才, 吕江波, 李品芳, 等. 中国冶金, 2016, 26(10), 45. 3 Jiao Z W, Zhang F F, Zhang C, et al. Recyclable Resources and Circular Economy, 2021, 14(4), 24 (in Chinese). 焦志伟, 张菲菲, 张超, 等. 再生资源与循环经济, 2021, 14(4), 24. 4 Li Z H. Energy for Metallurgical Industry, 2021, 40(6), 20 (in Chinese). 李振海. 冶金能源, 2021, 40(6), 20. 5 Fang W, Yang N C, You X M, et al. Steelmaking, 2020, 36(6), 8 (in Chinese). 方文, 杨宁川, 游香米, 等. 炼钢, 2020, 36(6), 8. 6 Guan T, Wang Y, Liu F, et al. Special Steel, 2019, 40(3), 19 (in Chinese). 管挺, 王耀, 刘飞, 等. 特殊钢, 2019, 40(3), 19. 7 Xiao L X, Li J, Yan W, et al. Nonferrous Metals Science and Engineering, 2019, 10(5), 46 (in Chinese). 肖龙鑫, 李晶, 闫威, 等. 有色金属科学与工程, 2019, 10(5), 46. 8 Kim Y, Pehlke R. Metallurgical and Materials Transactions B, 1974, 5(12), 2527. 9 Kim Y, Pehlke R. Metallurgical and Materials Transactions B, 1975, 6(4), 585. 10 Argyropoulos S, Mikrovas A. International Journal of Heat and Mass Transfer, 1996, 39(3), 547. 11 Nugumanov R F, Protopopov E V, Kharlashih P S, et al. Steel in Translation, 2009, 39(8), 624. 12 Isobe K, Maede H, Ozawa K, et al. Tetsu to Hagane, 1990, 76(11), 2033. 13 Cheng G G, Qin Z Z, Fan T. Steelmaking, 1994, 10(3), 17. 14 Shukla A K, Dmitry R, Volkova O, et al. Metallurgical and Materials Transactions B, 2011, 42(1), 224. 15 Pei K H, Chen C, Zhao Y, et al. The Chinese Journal of Process Engineering, 2022, 22(12), 1601. 16 Gao M, Gao J T, Zhang Y L, et al. International Journal of Minerals Metallurgy and Materials, 2021, 28(3), 380. 17 Melissari B, Argyropoulos S A. Metallurgical and Materials Transactions B, 2005, 36(5), 691. 18 Wu Y, Lacroix M. InternationalCommunications in Heat and Mass Transfer, 1995, 22(4), 517. 19 Yang W Y, Jiang X F, Li L, et al. Iron and Steel, 2017, 52(3), 27 (in Chinese). 杨文远, 蒋晓放, 李林, 等. 钢铁, 2017, 52(3), 27. 20 Liu M, Ma G, Zhang X, et al. Case Studies in Thermal Engineering, 2022, 34, 101995. 21 Yang G, Deng S, Xu A J, et al. Journal of Central South University(Science and Technology), 2019, 50(5), 1021 (in Chinese). 杨光, 邓帅, 徐安军, 等. 中南大学学报(自然科学版), 2019, 50(5), 1021. 22 Gao M, Yang S F, Zhang Y L. Ironmaking & Steelmaking, 2020, 47(9), 1006. 23 Chen S, Wang Z, Chen N, et al. Steel Research International, 2024, 95(5), 2300702. 24 Wang Z, Chen S, Chen N, et al. High Temperature Materials and Processes, 2024, 43(1), 20220322. 25 Quiyoom A, Golani R, Singh V, et al. Chemical Engineering Science, 2017, 170(1), 777. 26 Gao M, Gao J T, Zhang Y L, et al. JOM, 2020, 72(5), 1943. 27 Zhang J, Lou W, Shao P, et al. Metallurgical and Materials Transactions B, 2022, 53(6), 3585. 28 Lang M X, Liu H P, Xuan Y, et al. Steelmaking, 2023, 39(3), 16 (in Chinese). 郎茂信, 刘和平, 轩阳, 等. 炼钢, 2023, 39(3), 16. 29 Wang D G, Cheng N L, Zhou X B. The Chinese Journal of Process Engineering, 2020, 20(6), 678 (in Chinese). 王多刚, 程乃良, 周小宾. 过程工程学报, 2020, 20(6), 678.