Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24060048-8    https://doi.org/10.11896/cldb.24060048
  金属与金属基复合材料 |
非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究
汪宙1,2,*, 陈爽1, 马宗涛1, 张天豪1, 李继文1,2, 晁霞3
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 有色金属新材料与先进加工技术省部共建协同创新中心,河南 洛阳 471023
3 河南济源钢铁(集团)有限公司,河南 济源 454650
Simulation of the Effect of Non-uniform Bottom Blowing on the Scrap Melting Behavior in Iron-Carbon Melt
WANG Zhou1,2,*, CHEN Shuang1, MA Zongtao1, ZHANG Tianhao1, LI Jiwen1,2, CHAO Xia3
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023, Henan, China
3 Henan Jiyuan Iron & Steel (Group) Co., Ltd., Jiyuan 454650, Henan, China
下载:  全 文 ( PDF ) ( 18077KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 废钢是一种节能环保、可循环利用的铁素资源,转炉高废钢比冶炼是现阶段我国大量消耗废钢的重要途径,大力发展转炉高废钢比冶炼技术契合“双碳”目标下我国钢铁工业低碳绿色发展的战略需求。当前熔池废钢快速熔化是高废钢比冶炼技术亟需突破的应用瓶颈,铁碳熔池废钢熔化主要由废钢和熔池之间的传热与传质控制,通过优化底吹工艺可为铁碳熔池废钢的快速熔化提供良好的动力学条件。为此,本工作采用物理模拟结合数值模拟方法探究了底吹流量和底吹供气模式对废钢熔化行为的影响规律。结果表明,增大底吹流量以及采用非均衡底吹模式均能显著加速熔池废钢熔化。当底吹流量从160 Nm3/h增大至400 Nm3/h时,废钢中心温度从298 K升高至1 623 K所需时间缩短了46.00%,废钢的完全熔化时间缩短了44.44%。与传统均衡底吹模式相比,非均衡底吹(流量分配比为2∶1)模式下废钢的完全熔化时间缩短了35.19%。本研究可为铁碳熔池废钢的快速熔化与高效利用提供理论依据和数据支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪宙
陈爽
马宗涛
张天豪
李继文
晁霞
关键词:  废钢熔化  铁碳熔池  物理模拟  数值模拟  非均衡底吹    
Abstract: Scrap is an energy-saving, environmental-friendly and recyclable iron resource, and converter steel making with high scrap ratio is an important way to consume numerous scrap. Striving to develop converter steel making technology with high scrap ratio meets the strategic demand of low-carbon development of China's iron and steel industry under China's carbon peaking and neutrality goals. At present, the rapid melting of scrap is a major application bottleneck for converter steel making with high scrap ratio. Scrap melting is controlled by coupling heat and mass transfer between scrap and bath. Favorable dynamic conditions can be provided for the rapid melting of scrap in iron-carbon bath by optimizing the bottom blowing technology. Therefore, in this work physical and numerical simulation were adopted to investigate the influence of bottom gas flow rate and gas distribution mode on scrap melting. The results showed that whether increasing the gas flow rate or the adopting non-uniform blowing mode can significantly accelerate the scrap melting in bath. When the gas flow rate increases from 160 Nm3/h to 400 Nm3/h, the time for the scrap central temperature rises from 298 K to 1 623 K decreases by 46.00%, the melting time of scrap decreases by 44.44%. Compared with the traditional uniform blowing mode, the melting time of scrap with non-uniform blowing mode (the gas distribution ratio is 2∶1) reduces by 35.19%. This work could provide theoretical basis and data support for rapid melting and efficient utilization of scrap in converter steel making.
Key words:  scrap melting    iron-carbon melt    physical modeling    numerical simulation    non-uniform bottom blowing
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TF713.1  
基金资助: 国家自然科学基金(52204343);河南省科技研发计划联合基金(242103810053)
通讯作者:  * 汪宙,河南科技大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事高性能轴承钢夹杂物与碳化物控制技术研究、高性能钢铁冶金过程模拟与工艺优化等方面的研究。wangzhou29@163.com   
引用本文:    
汪宙, 陈爽, 马宗涛, 张天豪, 李继文, 晁霞. 非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究[J]. 材料导报, 2025, 39(14): 24060048-8.
WANG Zhou, CHEN Shuang, MA Zongtao, ZHANG Tianhao, LI Jiwen, CHAO Xia. Simulation of the Effect of Non-uniform Bottom Blowing on the Scrap Melting Behavior in Iron-Carbon Melt. Materials Reports, 2025, 39(14): 24060048-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060048  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24060048
1 Tian C J, Zang X M, Zhang L W, et al. Journal of Iron and Steel Research, DOI:10. 13228/j. boyuan. issn1001-0963. 20230273 (in Chinese).
田春健, 臧喜民, 张利武, 等. 钢铁研究学报, DOI:10. 13228/j. boyuan. issn1001-0963. 20230273.
2 Bu Q C, Lv J B, Li P F, et al. China Metallurgy, 2016, 26(10), 45 (in Chinese).
卜庆才, 吕江波, 李品芳, 等. 中国冶金, 2016, 26(10), 45.
3 Jiao Z W, Zhang F F, Zhang C, et al. Recyclable Resources and Circular Economy, 2021, 14(4), 24 (in Chinese).
焦志伟, 张菲菲, 张超, 等. 再生资源与循环经济, 2021, 14(4), 24.
4 Li Z H. Energy for Metallurgical Industry, 2021, 40(6), 20 (in Chinese).
李振海. 冶金能源, 2021, 40(6), 20.
5 Fang W, Yang N C, You X M, et al. Steelmaking, 2020, 36(6), 8 (in Chinese).
方文, 杨宁川, 游香米, 等. 炼钢, 2020, 36(6), 8.
6 Guan T, Wang Y, Liu F, et al. Special Steel, 2019, 40(3), 19 (in Chinese).
管挺, 王耀, 刘飞, 等. 特殊钢, 2019, 40(3), 19.
7 Xiao L X, Li J, Yan W, et al. Nonferrous Metals Science and Engineering, 2019, 10(5), 46 (in Chinese).
肖龙鑫, 李晶, 闫威, 等. 有色金属科学与工程, 2019, 10(5), 46.
8 Kim Y, Pehlke R. Metallurgical and Materials Transactions B, 1974, 5(12), 2527.
9 Kim Y, Pehlke R. Metallurgical and Materials Transactions B, 1975, 6(4), 585.
10 Argyropoulos S, Mikrovas A. International Journal of Heat and Mass Transfer, 1996, 39(3), 547.
11 Nugumanov R F, Protopopov E V, Kharlashih P S, et al. Steel in Translation, 2009, 39(8), 624.
12 Isobe K, Maede H, Ozawa K, et al. Tetsu to Hagane, 1990, 76(11), 2033.
13 Cheng G G, Qin Z Z, Fan T. Steelmaking, 1994, 10(3), 17.
14 Shukla A K, Dmitry R, Volkova O, et al. Metallurgical and Materials Transactions B, 2011, 42(1), 224.
15 Pei K H, Chen C, Zhao Y, et al. The Chinese Journal of Process Engineering, 2022, 22(12), 1601.
16 Gao M, Gao J T, Zhang Y L, et al. International Journal of Minerals Metallurgy and Materials, 2021, 28(3), 380.
17 Melissari B, Argyropoulos S A. Metallurgical and Materials Transactions B, 2005, 36(5), 691.
18 Wu Y, Lacroix M. International Communications in Heat and Mass Transfer, 1995, 22(4), 517.
19 Yang W Y, Jiang X F, Li L, et al. Iron and Steel, 2017, 52(3), 27 (in Chinese).
杨文远, 蒋晓放, 李林, 等. 钢铁, 2017, 52(3), 27.
20 Liu M, Ma G, Zhang X, et al. Case Studies in Thermal Engineering, 2022, 34, 101995.
21 Yang G, Deng S, Xu A J, et al. Journal of Central South University(Science and Technology), 2019, 50(5), 1021 (in Chinese).
杨光, 邓帅, 徐安军, 等. 中南大学学报(自然科学版), 2019, 50(5), 1021.
22 Gao M, Yang S F, Zhang Y L. Ironmaking & Steelmaking, 2020, 47(9), 1006.
23 Chen S, Wang Z, Chen N, et al. Steel Research International, 2024, 95(5), 2300702.
24 Wang Z, Chen S, Chen N, et al. High Temperature Materials and Processes, 2024, 43(1), 20220322.
25 Quiyoom A, Golani R, Singh V, et al. Chemical Engineering Science, 2017, 170(1), 777.
26 Gao M, Gao J T, Zhang Y L, et al. JOM, 2020, 72(5), 1943.
27 Zhang J, Lou W, Shao P, et al. Metallurgical and Materials Transactions B, 2022, 53(6), 3585.
28 Lang M X, Liu H P, Xuan Y, et al. Steelmaking, 2023, 39(3), 16 (in Chinese).
郎茂信, 刘和平, 轩阳, 等. 炼钢, 2023, 39(3), 16.
29 Wang D G, Cheng N L, Zhou X B. The Chinese Journal of Process Engineering, 2020, 20(6), 678 (in Chinese).
王多刚, 程乃良, 周小宾. 过程工程学报, 2020, 20(6), 678.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[3] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[6] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[7] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[8] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[9] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[10] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[11] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[12] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[13] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[14] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[15] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed