Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24050044-6    https://doi.org/10.11896/cldb.24050044
  无机非金属及其复合材料 |
钒钛铁尾矿制备矿山修复混凝土及性能研究
王长龙1, 付兴帅1, 杨彩霞2,*, 张凯帆3, 白云翼1, 路璐1, 高占须1, 郑永超4, 刘治兵1, 翟玉新5, 刘枫5
1 河北工程大学土木工程学院,河北省建筑工程低碳建造与韧性提升重点实验室,河北 邯郸 056038
2 河北省地质矿产勘查开发局第一地质大队,河北 邯郸 056001
3 江西理工大学资源与环境工程学院,战略金属矿产资源低碳加工与利用江西省重点实验室,江西 赣州 341000
4 北京建筑材料科学研究总院有限公司,固废资源化利用与节能建材国家重点实验室,北京 100041
5 中铁建设集团有限公司,北京 100040
Preparation and Performance of Concrete for Mine Restoration Containing Vanadium-Titanium Magnetite Tailings
WANG Changlong1, FU Xingshuai1, YANG Caixia2,*, ZHANG Kaifan3, BAI Yunyi1, LU Lu1, GAO Zhanxiu1, ZHENG Yongchao4, LIU Zhibing1, ZHAI Yuxin5, LIU Feng5
1 Hebei Province Key Laboratory for Low-Carbon Construction and Resilience Enhancement of Construction Engineering, School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
2 The First Geological Brigade, Hebei Geology and Mineral Resources Exploration Bureau, Handan 056001, Hebei, China
3 Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
4 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China
5 China Railway Construction Group Co.,Ltd., Beijing 100040, China
下载:  全 文 ( PDF ) ( 6062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提高钒钛铁矿废弃物在混凝土中的利用率,不仅能降低对水泥、天然砂和石子的依赖,还能减少废渣的大量堆存,若将其应用于边坡稳定与加固等矿山生态修复工程中又能实现“以废治废”。本工作以钒钛铁尾矿粉为掺和料制备复合胶凝材料,同时以钒钛铁尾矿废石和钒钛铁尾矿砂为粗细集料制备C40预拌混凝土,并对预拌混凝土的和易性、耐久性和环境安全性进行了研究。结果表明:随着钒钛铁尾矿粉的掺量增加,预拌混凝土的中、早期强度降低,但后期强度呈先升高后降低的趋势;通过优化复合胶凝材料的配合比,当水泥、粉煤灰、矿渣粉、钒钛铁尾矿粉的质量比为47∶8∶26∶19,水胶比为0.4时,C40混凝土强度指标与普通水泥混凝土相近,且各项工作指标满足要求;耐久性的各项指标与强度并无明确关联,应根据混凝土适用环境进行配合比的调整;重金属浸出量随钒钛铁尾矿粉掺量增加而增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王长龙
付兴帅
杨彩霞
张凯帆
白云翼
路璐
高占须
郑永超
刘治兵
翟玉新
刘枫
关键词:  钒钛铁矿废弃物  复合胶凝材料  预拌混凝土  耐久性  矿山生态修复    
Abstract: Improving the utilization rate of vanadium-titanium magnetite waste in concrete can not only reduce the dependence on cement and natural sand and gravel, but also cut down a large amount of waste residue storage, meanwhile, realize "waste treatment" if applied to mine ecological restoration projects such as slope stabilization and reinforcement. In this work, composite cementitious materials were prepared by using vanadium-titanium iron ore tailings powder as mineral admixture, while vanadium-titanium iron ore tailings waste rock and vanadium-titanium iron ore tailings sand were used as coarse and fine aggregates to prepare C40 pre-mixed concrete. Then the workability, durability, and environmental safety of the pre-mixed concrete were investigated. The results show that:with the increase of vanadium and titanium iron ore tailing powder, the mid-early strength of pre-mixed concrete decreases, but the 28 day compressive strength of pre-mixed concrete shows a tendency of increasing and then decreasing. By optimizing the cementitious material ratio of cement, the concrete with a water-cement ratio of 0.4 and the mass ratio of cement, fly ash, slag powder, vanadium-titanium iron ore tailing powder is 47∶8∶26∶19 has a similar cementitious block strength index to that of ordinary cement, and its working indexes reach the standards. There is no clear correlation between the durability index and the strength, and the mix ratio should be adjusted according to the applicable environment of concrete. The leaching of heavy metals increases with the increase of vanadium-titanium-iron tailings powder.
Key words:  vanadium-titanium magnetite waste    composite cementitious material    pre-mixed concrete    durability    mine ecological restoration
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TU528.52  
基金资助: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2025402076);中央引导地方科技发展资金(V1744808219260);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007);国家环境保护矿冶资源利用与污染控制重点实验室开放基金(HB202306);河北省建筑工程低碳建造与韧性提升重点实验室开放基金(HKL-LRC-2024-2)
通讯作者:  * 杨彩霞,硕士,高级工程师。长期从事绿色矿山建设基础理论及关键技术研究。genuinecaixia@163.com   
作者简介:  王长龙,博士,河北工程大学教授、博士研究生导师。长期从事固废高值利用理论及关键技术研究。
引用本文:    
王长龙, 付兴帅, 杨彩霞, 张凯帆, 白云翼, 路璐, 高占须, 郑永超, 刘治兵, 翟玉新, 刘枫. 钒钛铁尾矿制备矿山修复混凝土及性能研究[J]. 材料导报, 2025, 39(14): 24050044-6.
WANG Changlong, FU Xingshuai, YANG Caixia, ZHANG Kaifan, BAI Yunyi, LU Lu, GAO Zhanxiu, ZHENG Yongchao, LIU Zhibing, ZHAI Yuxin, LIU Feng. Preparation and Performance of Concrete for Mine Restoration Containing Vanadium-Titanium Magnetite Tailings. Materials Reports, 2025, 39(14): 24050044-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050044  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24050044
1 Lv X D, Shen W G, Wang L, et al. Journal of Cleaner Production, 2019, 211, 704.
2 Mistri A, Illikainen M, Perumal P. Journal of Materials in Civil Engineering, 2024, 36(5), 16678.
3 Han F H, Song S M, Liu J H, et al. Powder Technology, 2019, 345, 292.
4 Liu M, Xu L H, Di Y P, et al. Metal Mine, 2008(7), 144 (in Chinese).
刘明, 徐利华, 邸云萍, 等. 金属矿山, 2008(7), 144.
5 Yu H X, Zahidi I, Fai C M. Environmental Research, 2023, 223, 116336.
6 Jiang Y F, Wang H, Chen Y, et al. Material in Technology, 2019, 53(4), 467.
7 Zhao J S, Ni K, Su Y P, et al. Construction and Building Materials, 2021, 286, 122968.
8 Zhang W F, Gu X W, Qiu J P, et al. Construction and Building Materials, 2020, 260, 119917.
9 Wang C L, Zhao G F, Zheng Y C, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(4), 217.
10 Li J J, Wang C Z, Ni W, et al. Materials, 2022, 12(2), 246.
11 Zhang Y N, Dong M W, Zhang W J, et al. Materials, 2022, 15(15), 5162.
12 Zhang Y N, Yang D K, Gu X W, et al. Materials, 2022, 15(11), 3866.
13 Wang C L, Ma J T, Yang F H, et al. Iron Steel Vanadium Titanium, 2023, 44(1), 98 (in Chinese).
王长龙, 马锦涛, 杨丰豪, 等. 钢铁钒钛, 2023, 44(1), 98.
14 Wang C L, Jing J L, Qi Y, et al. Iron Steel Vanadium Titanium, 2023, 44(3), 105 (in Chinese).
王长龙, 荆牮霖, 齐洋, 等. 钢铁钒钛, 2023, 44(3), 105.
15 Cui X W, Ni W, Geng B Y, et al. Chinese Journal of Engineering, 2018, 40(6), 658 (in Chinese).
崔孝炜, 倪文, 耿碧瑶, 等. 工程科学学报, 2018, 40(6), 658.
16 Lin X R. Study on preparation of pre-mixed concrete from vanadium-titanium iron ore tailings as minerals admixture. Master's Thesis, Hebei University of Engineering, China, 2020 (in Chinese).
吝晓然. 钒钛铁尾矿微粉作为掺合料制备预拌混凝土的研究. 硕士学位论文, 河北工程大学, 2020.
17 Ogirigbo O R, Black L. Construction and Building Materials, 2017, 149, 816.
18 Zhang J, Shi C J, Zhang Z H, et al. Construction Building Materials, 2017, 152, 598.
19 Powers T C. Portland Cement Association Highway Research Board, 1975, 29(8), 184.
20 Zhu H, Hu Y, Ma R, et al. Construction and Building Materials, 2021, 283, 122762.
21 Chang J J, Yeih W C, Huang R, et al. Journal of the Chinese Institute of Engineers, 2003, 26(4), 513.
22 Zajac M, Irbe L, Bullerjahn F, et al. Cement and Concrete Research, 2022, 152, 106687.
23 Chang H L, Wang Y F, Wang X L, et al. Construction and Building Materials, 2022, 324, 126639.
24 Metalssi O O, Aït-Mokhtar A, Turcry P, et al. Construction and Building Materials, 2012, 34, 218.
25 Morandeau A, Thiery M, Dangla P. Cement and Concrete Research, 2014, 56, 153.
26 Wei Y, Cao S J, Wang H, et al. Arabian Journal for Science and Engineering, 2023, 48, 13211.
27 Dias Andrade H, Franco de Carvalho M J, Barbosa Costa L C, et al. Construction and Building Materials, 2021, 298, 123910.
28 Ali Siyal A, Rashid Shamsuddin M, Irfan Khan M, et al. Journal of Environmental Management, 2018, 224, 327.
29 Gougar M L D, Scheetz B E, Roy D M. Waste Management, 1996, 16(4), 295.
30 Guo B, Liu B, Yang J, et al. Journal of Environmental Management, 2017, 193, 410.
[1] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[2] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[3] 梁卓悦, 余波, 蔡盛源, 解威威. 基于材料成本与碳排放成本最小化的低碳混凝土配合比优化设计方法[J]. 材料导报, 2025, 39(14): 23120180-6.
[4] 麻春英, 高俊, 沈明学. 超疏水表面机械稳定性研究现状及发展趋势[J]. 材料导报, 2025, 39(14): 24090242-11.
[5] 管焓宇, 张登宇, 欧阳金平, 张伟强, 刘志勇. 高性能水性环氧涂层及涂层钢筋应用研究进展[J]. 材料导报, 2025, 39(13): 24080081-10.
[6] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[9] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[10] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[11] 赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
[12] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[13] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[14] 杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
[15] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed