Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24060014-7    https://doi.org/10.11896/cldb.24060014
  金属与金属基复合材料 |
CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能
麻相龙1, 曹睿1,*, 徐灏1, 周宁2,3, 高爽2,3, 徐志伟2,3
1 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
2 中国钢研科技集团有限公司安泰科技股份有限公司,北京 100081
3 河北省热等静压技术创新中心,河北 涿州 275000
Microstructure and Properties of Ti/Al Joints with CoCrFeNiMn High-entropy Alloy Interlayer by Hot Isostatic Pressing Diffusion Bonding
MA Xianglong1, CAO Rui1,*, XU Hao1, ZHOU Ning2,3, GAO Shuang2,3, XU Zhiwei2,3
1 The State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 China Iron & Steel Research Technology Co., Ltd., Advanced Technology & Materials Co., Ltd., Beijing 100081, China
3 Hebei Hot Isostatic Pressure Technology Innovation Center, Zhuozhou 275000, Hebei, China
下载:  全 文 ( PDF ) ( 36981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用CoCrFeNiMn高熵合金作为中间层进行TC4钛合金和6061铝合金的异种金属热等静压扩散连接实验,研究了接头的微观结构、力学性能和耐蚀性能。结果表明,接头形成了连续的结合界面,结合界面由层状的TiAl3、块状的Al-Fe相及两侧母材组成。CoCrFeNiMn高熵合金的加入阻碍了Ti、Al的过量混合,一定程度上抑制了Ti-Al金属间化合物的生成,结合界面形成了厚度仅为1 μm的TiAl3相。接头的拉伸试验和断口形貌观察显示断裂发生于高熵合金过渡层与6061铝合金之间,断裂模式为脆性断裂,最大抗拉强度达到120 MPa。接头及母材的动电位极化曲线显示接头的腐蚀电位位于两母材之间,腐蚀电流密度高于两母材,表明接头的耐蚀性高于6061铝母材,而腐蚀速率高于两母材,接头腐蚀形貌显示腐蚀行为主要为点蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
麻相龙
曹睿
徐灏
周宁
高爽
徐志伟
关键词:  热等静压扩散连接  Ti/Al异种接头  高熵合金中间层  微观组织  连接性能    
Abstract: CoCrFeNiMn high-entropy alloy was used as an interlayer to join TC4 titanium alloy and 6061 aluminum alloy by hot isostatic pressing diffusion bonding method. The microstructure, mechanical properties, and corrosion resistance of the joint were investigated. The results show that a continuous bonding interface is formed in the joint, which consisted of layered TiAl3, blocky Al-Fe phase, and the base metals on both sides. The addition of CoCrFeNiMn high-entropy alloy can hinder the excessive mixing of Ti and Al, inhibit the formation of Ti-Al intermetallic compounds to a certain extent, and form a TiAl3 phase with a thickness of only 1 μm at the bonding interface. The tensile test of the joint and the observation of the fracture morphology show that the fracture occurred between the high-entropy alloy transition layer and the 6061 aluminum alloy, and the fracture mode is brittle fracture, with the maximum tensile strength reaching 120 MPa. The dynamic potential polarization curves of the joint and the base metals show that the corrosion potential of the joint is between the two base materials, and the corrosion current density is higher than that of the two base metals, indicating that the corrosion resistance of the joint is higher than that of the 6061 Al base metal, but the corrosion rate is higher than that of the two base metals. The corrosion morphology of the joint shows that the corrosion behavior is mainly pitting corrosion.
Key words:  hot isostatic pressing diffusion bonding    Ti/Al dissimilar joint    high-entropy alloy interlayer    microstructure    joint performance
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TG457.1  
基金资助: 国家自然科学基金(52175325);甘肃省科技重大专项(22ZD6GA008)
通讯作者:  *曹睿,博士,兰州理工大学材料科学与工程学院教授、博士研究生导师。目前主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等方面的研究工作。caorui@lut.edu.cn   
作者简介:  麻相龙,兰州理工大学材料科学与工程学院博士研究生,在曹睿教授的指导下进行研究。目前主要研究领域为异种金属连接。
引用本文:    
麻相龙, 曹睿, 徐灏, 周宁, 高爽, 徐志伟. CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能[J]. 材料导报, 2025, 39(12): 24060014-7.
MA Xianglong, CAO Rui, XU Hao, ZHOU Ning, GAO Shuang, XU Zhiwei. Microstructure and Properties of Ti/Al Joints with CoCrFeNiMn High-entropy Alloy Interlayer by Hot Isostatic Pressing Diffusion Bonding. Materials Reports, 2025, 39(12): 24060014-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060014  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24060014
1 Peng X, Guo H, Shi Z, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(3), 682.
2 Wang G, Chen Z, Li J, et al. Journal of Materials Science & Technology, 2018, 34(3), 570.
3 Zhang X M, Deng Y L, Zhang Y. Acta Metallurgica Sinica, 2015, 51(3), 257(in Chinese).
张新明, 邓运来, 张勇. 金属学报, 2015, 51(3), 257.
4 Yan S, Qin Q H, Chen H, et al. Journal of Manufacturing Processes, 2020, 56, 295.
5 Zhang Z, Huang J, Fu J, et al. Journal of Materials Processing Technology, 2022, 302, 117502.
6 Gu X, Cui M, Chen J, et al. Journal of Materials Research and Technology, 2021, 13, 2202.
7 Xia Y F, Zhang X, Liao H L, et al. Transactions of the Chinese Welding Society, 2021, 42(8), 18(in Chinese).
夏玉峰, 张雪, 廖海龙, 等. 焊接学报, 2021, 42(8), 18.
8 TianY B, Shen J Q, Hu S S, et al. Acta Metallica Sinica, 2019, 55(11), 1407(in Chinese).
田银宝, 申俊琦, 胡绳荪. 金属学报, 2019, 55(11), 1407.
9 Leo P, D’ostuni S, Casalino G. Optics & Laser Technology, 2018, 100, 109.
10 Atkinson H V, Davies S. Metallurgical and Materials Transactions A, 2000, 31, 2981.
11 Le J, Yang J, Yin H, et al. Materials Science and Engineering:A, 2023, 875, 145060.
12 Xiao Y, Lang L, Xu W, et al. Journal of Materials Research and Technology, 2022, 19, 1789.
13 Shen Z Z, Lin J P, Liang Y F, et al. Rare Metals, 2016, 35, 100.
14 Yao W, Wu A P, Zou G S, et al. Rare Metal Materials and Engineering, 2007(4), 700(in Chinese).
姚为, 吴爱萍, 邹贵生, 等. 稀有金属材料与工程, 2007(4), 700.
15 Alhazaa A, Albrithen H, Hezam M, et al. Crystals, 2022, 12(9), 1293.
16 Samavatian M, Halvaee A, Amadeh A A, et al. Materials Characterization, 2014, 98, 113.
17 Jiangwei R, Yajiang L, Tao F. Materials Letters, 2002, 56(5), 647.
18 Mofid M A, Nejad A M. Materials Chemistry and Physics, 2021, 263, 124404.
19 Sohn W H, Bong H H, Hong S H. Materials Science and Engineering:A, 2003, 355(1-2), 231.
20 Kenevisi M S, Khoie S M M. Materials & Design, 2012, 38, 19.
21 Alhazaa A N. Diffusion bonding of Al7075 alloy to Ti-6Al-4V alloy. Ph. D. Thesis, University of Calgary, Calgary, 2009.
22 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
23 Ding W, Liu N, Fan J, et al. Intermetallics, 2021, 129, 107027.
24 Ding W, Wang X J, Liu N, et al. Acta Metalica Sinica, 2020, 56(8), 1084(in Chinese).
丁文, 王小京, 刘宁, 等. 金属学报, 2020, 56(8), 1084.
25 Gu X, Zhang L. Materials Letters, 2022, 312, 131562.
26 Guo X Z, Fan M Y, Liu Z L, et al. Rare Metal Materials and Engineering, 2017, 46(5), 1192(in Chinese).
郭训忠, 范敏郁, 刘忠利, 等. 稀有金属材料与工程, 2017, 46(5), 1192.
27 Lacki P, Derlatka A. Composite Structures, 2017, 159, 491.
28 Yu H, Lu C, Tieu A K, et al. Materials Science and Engineering:A, 2016, 660, 195.
29 Liu M, Zhang C, Meng Z, et al. Composites Part B:Engineering, 2022, 230, 109507.
30 Wang Z, Shen J, Hu S, et al. Optics & Laser Technology, 2022, 149, 107867.
31 Wang P, Chen Z, Hu C, et al. Journal of Materials Research and Technology, 2020, 9(5), 11813.
32 Yao H, Chen K, Kondoh K, et al. Materials & Design, 2022, 224, 111411.
33 Wu Z G, Li X, Li Z T. Materials Reports, 2019, 35(17), 17031 (in Chinese).
吴正刚, 李熙, 李忠涛. 材料导报, 2021, 35(17), 17031.
34 Hsu W L, Tsai C W, Yeh A C, et al. Nature Reviews Chemistry, 2024, 1.
35 Miedema A R, De Chatel P F, De Boer F R. Physica B+C, 1980, 100(1), 1.
36 Liu D, Wang J, Xu M, et al. Journal of Manufacturing Processes, 2020, 58(33), 500.
37 Li P, Li C, Dong H, et al. Journal of Alloys and Compounds, 2022(909), 909.
38 Aballe A, Bethencourt M, Botana F J, et al. Corrosion Science, 2001, 43(9), 1657.
39 Vacchi G S, Plaine A H, Silva R, et al. Materials & Design, 2017, 131, 127.
40 Park J O, Paik C H, Huang Y H, et al. Journal of the Electrochemical Society, 1999, 146(2), 517.
[1] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[2] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 孙磊, 何鹏, 张亮, 张墅野, 王文昊, 张潘杰. TiN纳米颗粒增强Sn焊点的性能与组织研究[J]. 材料导报, 2025, 39(10): 24030018-4.
[6] 张兵宪, 陈素明, 贺韡, 牛鹏亮, 黄春平. 补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2025, 39(10): 24040146-6.
[7] 张建波, 沈琪飞, 尹宁康, 张晋涵, 刘敬萱. Ni/P质量比对Cu-Ni-P合金组织和性能的影响[J]. 材料导报, 2025, 39(10): 24030240-6.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[15] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed