Microstructure and Properties of Ti/Al Joints with CoCrFeNiMn High-entropy Alloy Interlayer by Hot Isostatic Pressing Diffusion Bonding
MA Xianglong1, CAO Rui1,*, XU Hao1, ZHOU Ning2,3, GAO Shuang2,3, XU Zhiwei2,3
1 The State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 China Iron & Steel Research Technology Co., Ltd., Advanced Technology & Materials Co., Ltd., Beijing 100081, China 3 Hebei Hot Isostatic Pressure Technology Innovation Center, Zhuozhou 275000, Hebei, China
Abstract: CoCrFeNiMn high-entropy alloy was used as an interlayer to join TC4 titanium alloy and 6061 aluminum alloy by hot isostatic pressing diffusion bonding method. The microstructure, mechanical properties, and corrosion resistance of the joint were investigated. The results show that a continuous bonding interface is formed in the joint, which consisted of layered TiAl3, blocky Al-Fe phase, and the base metals on both sides. The addition of CoCrFeNiMn high-entropy alloy can hinder the excessive mixing of Ti and Al, inhibit the formation of Ti-Al intermetallic compounds to a certain extent, and form a TiAl3 phase with a thickness of only 1 μm at the bonding interface. The tensile test of the joint and the observation of the fracture morphology show that the fracture occurred between the high-entropy alloy transition layer and the 6061 aluminum alloy, and the fracture mode is brittle fracture, with the maximum tensile strength reaching 120 MPa. The dynamic potential polarization curves of the joint and the base metals show that the corrosion potential of the joint is between the two base materials, and the corrosion current density is higher than that of the two base metals, indicating that the corrosion resistance of the joint is higher than that of the 6061 Al base metal, but the corrosion rate is higher than that of the two base metals. The corrosion morphology of the joint shows that the corrosion behavior is mainly pitting corrosion.
1 Peng X, Guo H, Shi Z, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(3), 682. 2 Wang G, Chen Z, Li J, et al. Journal of Materials Science & Technology, 2018, 34(3), 570. 3 Zhang X M, Deng Y L, Zhang Y. Acta Metallurgica Sinica, 2015, 51(3), 257(in Chinese). 张新明, 邓运来, 张勇. 金属学报, 2015, 51(3), 257. 4 Yan S, Qin Q H, Chen H, et al. Journal of Manufacturing Processes, 2020, 56, 295. 5 Zhang Z, Huang J, Fu J, et al. Journal of Materials Processing Technology, 2022, 302, 117502. 6 Gu X, Cui M, Chen J, et al. Journal of Materials Research and Technology, 2021, 13, 2202. 7 Xia Y F, Zhang X, Liao H L, et al. Transactions of the Chinese Welding Society, 2021, 42(8), 18(in Chinese). 夏玉峰, 张雪, 廖海龙, 等. 焊接学报, 2021, 42(8), 18. 8 TianY B, Shen J Q, Hu S S, et al. Acta Metallica Sinica, 2019, 55(11), 1407(in Chinese). 田银宝, 申俊琦, 胡绳荪. 金属学报, 2019, 55(11), 1407. 9 Leo P, D’ostuni S, Casalino G. Optics & Laser Technology, 2018, 100, 109. 10 Atkinson H V, Davies S. Metallurgical and Materials Transactions A, 2000, 31, 2981. 11 Le J, Yang J, Yin H, et al. Materials Science and Engineering:A, 2023, 875, 145060. 12 Xiao Y, Lang L, Xu W, et al. Journal of Materials Research and Technology, 2022, 19, 1789. 13 Shen Z Z, Lin J P, Liang Y F, et al. Rare Metals, 2016, 35, 100. 14 Yao W, Wu A P, Zou G S, et al. Rare Metal Materials and Engineering, 2007(4), 700(in Chinese). 姚为, 吴爱萍, 邹贵生, 等. 稀有金属材料与工程, 2007(4), 700. 15 Alhazaa A, Albrithen H, Hezam M, et al. Crystals, 2022, 12(9), 1293. 16 Samavatian M, Halvaee A, Amadeh A A, et al. Materials Characterization, 2014, 98, 113. 17 Jiangwei R, Yajiang L, Tao F. Materials Letters, 2002, 56(5), 647. 18 Mofid M A, Nejad A M. Materials Chemistry and Physics, 2021, 263, 124404. 19 Sohn W H, Bong H H, Hong S H. Materials Science and Engineering:A, 2003, 355(1-2), 231. 20 Kenevisi M S, Khoie S M M. Materials & Design, 2012, 38, 19. 21 Alhazaa A N. Diffusion bonding of Al7075 alloy to Ti-6Al-4V alloy. Ph. D. Thesis, University of Calgary, Calgary, 2009. 22 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 23 Ding W, Liu N, Fan J, et al. Intermetallics, 2021, 129, 107027. 24 Ding W, Wang X J, Liu N, et al. Acta Metalica Sinica, 2020, 56(8), 1084(in Chinese). 丁文, 王小京, 刘宁, 等. 金属学报, 2020, 56(8), 1084. 25 Gu X, Zhang L. Materials Letters, 2022, 312, 131562. 26 Guo X Z, Fan M Y, Liu Z L, et al. Rare Metal Materials and Engineering, 2017, 46(5), 1192(in Chinese). 郭训忠, 范敏郁, 刘忠利, 等. 稀有金属材料与工程, 2017, 46(5), 1192. 27 Lacki P, Derlatka A. Composite Structures, 2017, 159, 491. 28 Yu H, Lu C, Tieu A K, et al. Materials Science and Engineering:A, 2016, 660, 195. 29 Liu M, Zhang C, Meng Z, et al. Composites Part B:Engineering, 2022, 230, 109507. 30 Wang Z, Shen J, Hu S, et al. Optics & Laser Technology, 2022, 149, 107867. 31 Wang P, Chen Z, Hu C, et al. Journal of Materials Research and Technology, 2020, 9(5), 11813. 32 Yao H, Chen K, Kondoh K, et al. Materials & Design, 2022, 224, 111411. 33 Wu Z G, Li X, Li Z T. Materials Reports, 2019, 35(17), 17031 (in Chinese). 吴正刚, 李熙, 李忠涛. 材料导报, 2021, 35(17), 17031. 34 Hsu W L, Tsai C W, Yeh A C, et al. Nature Reviews Chemistry, 2024, 1. 35 Miedema A R, De Chatel P F, De Boer F R. Physica B+C, 1980, 100(1), 1. 36 Liu D, Wang J, Xu M, et al. Journal of Manufacturing Processes, 2020, 58(33), 500. 37 Li P, Li C, Dong H, et al. Journal of Alloys and Compounds, 2022(909), 909. 38 Aballe A, Bethencourt M, Botana F J, et al. Corrosion Science, 2001, 43(9), 1657. 39 Vacchi G S, Plaine A H, Silva R, et al. Materials & Design, 2017, 131, 127. 40 Park J O, Paik C H, Huang Y H, et al. Journal of the Electrochemical Society, 1999, 146(2), 517.