Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24060108-12    https://doi.org/10.11896/cldb.24060108
  金属与金属基复合材料 |
染料负载型MOFs复合材料用作发光中心材料的研究进展
王逸飞1, 张月1,*, 赵鹏程1,*, 由岫2
1 中国刑事警察学院刑事科学技术学院,沈阳 110035
2 甘肃省公安厅刑警总队,兰州 730000
Research Progress of Dye-supported MOFs Composites as Luminescent Center Materials
WANG Yifei1, ZHANG Yue1,*, ZHAO Pengcheng1,*, YOU Xiu2
1 College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang 110035, China
2 Criminal Police Detachment, Gansu Provincial Public Security Department, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 47716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着金属有机框架材料(MOFs)的快速发展,将荧光染料负载到MOFs上形成的复合系统作为一类新型功能性发光材料受到广泛关注。该类材料通过合理设计MOFs主体基质和选择发光基团,实现了从紫外到近红外范围的可控发光,并在白光发射、可调谐发光以及特定波长高效发光等方面展现出巨大的应用潜力。本文介绍了染料负载在MOFs中的不同方式,深入分析了MOFs与染料分子组合的普遍性要求,包括孔径与染料分子尺寸的匹配、相关材料的发光机理、主客体相互作用类型及化学稳定性等。在此基础上,讨论了基于不同负载原理选择的制备方法来优化发光性能。随后,列举了染料负载型MOFs在白光发射、可调谐发光及其他发光方面的最新研究成果,并探讨了其在其他新兴应用中的潜力。最后,综述了当前的研究进展,展望了未来研究方向和应用前景,并指出了其在发光领域的广阔发展潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王逸飞
张月
赵鹏程
由岫
关键词:  金属有机框架材料  染料负载  发光材料  光电技术  颜色可调性  白光发射    
Abstract: The rapid development of metal-organic framework materials (MOFs) has generated significant interest in the composite systems formed by integrating fluorescent dyes into MOFs as novel functional luminescent materials. By meticulously designing the MOF matrix and selecting suitable luminescent groups, these materials can achieve controlled luminescence across a wide spectrum, ranging from ultraviolet to near-infrared. This controlled luminescence shows great potential for applications in white light emission, tunable luminescence, and efficient luminescence at specific wavelengths. This review presents the diverse approaches of dye loading in MOFs and analyzes the general requirements for the combination of MOF and dye molecules, encompassing the matching of pore size and the size of dye molecules, the luminescence mechanism of related materials, the type of host-guest interaction, and chemical stability. On this basis, the selection of preparation methods based on different loading principles was studied to optimize the luminescence performance. Subsequently, the latest research on white light emission, tunable luminescence, and other luminescences of dye-supported MOFs materials is reviewed, and their potential in other nascent applications is discussed. Finally, the current research progress is reexamined, the future research direction and application prospects are envisioned, and the broad deve-lopment potential of dye-supported MOFs composites in the luminescence field is indicated.
Key words:  metal-organic frame material    dye loading    luminous material    photoelectric technology    color adjustability    white light emission
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  O611.3  
基金资助: 公安部科技强警基础工作专项(2022JC03;2023JC05);中国刑事警察学院科学研究项目(D2022044)
通讯作者:  *张月,中国刑事警察学院刑事科学技术学院讲师。目前主要从事金属有机骨架及其复合材料的合成及传感等方面的研究工作。zhangyue1022_cipuc@163.com
赵鹏程,中国刑事警察学院刑事科学技术学院教授、硕士研究生导师。目前主要从事功能材料、枪弹和发射药分析和公安科技的研究工作。zhaopengcheng@cipuc.edu.cn   
作者简介:  王逸飞,现为中国刑事警察学院刑事科学技术学院硕士研究生,在赵鹏程教授和张月老师的指导下进行研究。目前主要研究领域为染料负载型MOFs复合材料的荧光传感检测性能和公安科技等。
引用本文:    
王逸飞, 张月, 赵鹏程, 由岫. 染料负载型MOFs复合材料用作发光中心材料的研究进展[J]. 材料导报, 2025, 39(12): 24060108-12.
WANG Yifei, ZHANG Yue, ZHAO Pengcheng, YOU Xiu. Research Progress of Dye-supported MOFs Composites as Luminescent Center Materials. Materials Reports, 2025, 39(12): 24060108-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060108  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24060108
1 Zhao Y, Wang X S, Zhang Y, et al. Journal of Alloys and Compounds, 2020, 817, 27.
2 Yoon H, Park M, Kim J, et al. Chemical Physics Reviews, 2021, 2, 35.
3 Zhang F, Tang B Z. Chemical Science, 2021, 12, 3377.
4 Chen X, Sun T Y, Wang F. Chemistry-an Asian Journal, 2020, 15, 21.
5 Chen H, Shang H M, Liu Y, et al. Advanced Functional Materials, 2016, 26, 8128.
6 Park Y, Ryu Y M, Wang T, et al. Advanced Functional Materials, 2018, 28, 13.
7 Lei Z H, Sun C X, Pei P, et al. Angewandte Chemie-International Edition, 2019, 58, 8166.
8 Chen W W, Zhuang Y X, Wang L, et al. ACS Applied Materials & Interfaces, 2018, 10, 189107.
9 Huang Y, Wang W J, Lin J, et al. Ceramics International, 2017, 43, 2107.
10 Jiang H L, Tatsu Y, Lu Z H, et al. Journal of the American Chemical Society, 2010, 132, 5586.
11 Chen Z, Gu Z G, Fu W Q, et al. ACS Applied Materials & Interfaces, 2016, 8, 287372.
12 Wei Y H, Dong H Y, Wei C, et al. Advanced Materials, 2016, 28, 7424.
13 Feng J F, Gao S Y, Shi J L, et al. Inorganic Chemistry, 2018, 57, 2447.
14 Fu H R, Yan L B, Wu N T, et al. Journal of Materials Chemistry A, 2018, 6, 9183.
15 Zhang N Z, Zhang D W, Zhao J, et al. Dalton Transactions, 2019, 48, 6794.
16 Let S, Samanta P, Dutta S, et al. Inorganica Chimica Acta, 2020, 500, 5.
17 He N, Gao M L, Shen D P, et al. Forensic Science International, 2019, 297, 1.
18 He N, Gao M L, Han Z B, et al. Forensic Science and Technology, 2020, 45(1), 75(in Chinese).
何宁, 高明亮, 韩正波, 等. 刑事技术, 2020, 45(1), 75.
19 Liang W, Bhatt P M, Shkurenko A, et al. Chem, 2019, 5, 950.
20 Lin R B, Xiang S C, Li B, et al. Coordination Chemistry Reviews, 2019, 384, 21.
21 Lin R B, Xiang S C, Zhou W, et al. Chem, 2020, 6, 337.
22 Gole B, Sanyal U, Banerjee R, et al. Inorganic Chemistry, 2016, 55, 2345.
23 Li J W, Liao J H, Ren Y W, et al. Angewandte Chemie-International Edition, 2019, 58, 171482.
24 Li Y W, Lu M T, Wu Y H, et al. Journal of Materials Chemistry A, 2020, 8, 182159.
25 Kotzabasaki M, Froudakis G E. Inorganic Chemistry Frontiers, 2018, 5, 1255.
26 Jiang K, Zhang L, Hu Q, et al. Microporous and Mesoporous Materials, 2019, 275, 229.
27 Lei C, Gao J K, Ren W J, et al. Carbohydrate Polymers, 2019, 205, 35.
28 Zhang Q, Wahiduzzaman M, Wang S J, et al. Chem, 2019, 5, 1337.
29 Zhao D, Han X, Wang S, et al. Chemistry-A European Journal, 2020, 26, 3145.
30 Cui Y J, Li B, He H J, et al. Accounts of Chemical Research, 2016, 49, 483.
31 Rios A G, Matos L C, Manrique Y A, et al. Adsorption-Journal of the International Adsorption Society, 2020, 26, 75.
32 Tang Y, Wu H L, Cao W Q, et al. Advanced Optical Materials, 2021, 9, 14.
33 Emam H E, Abdelhameed R M. ACS Applied Materials & Interfaces, 2017, 9, 280345.
34 Monguzzi A, Ballabio M, Yanai N, et al. Nano Letters, 2018, 18, 528.
35 Lustig W P, Li J. Coordination Chemistry Reviews, 2018, 373, 116.
36 Xia Y P, Wang C X, An L C, et al. Inorganic Chemistry Frontiers, 2018, 5, 2868.
37 Wang X B, Li Z Y, Ying W, et al. Journal of Materials Chemistry C, 2020, 8, 240.
38 Yu J C, Cui Y J, Xu H, et al. Nature Communications, 2013, 4, 7.
39 Cui Y J, Xu H, Yue Y F, et al. Journal of the American Chemical Society, 2012, 134, 3979.
40 Cui Y J, Song T, Yu J C, et al. Advanced Functional Materials, 2015, 25, 4796.
41 Wen Y H, Sheng T L, Zhu X Q, et al. Advanced Materials, 2017, 29, 8.
42 Chen Y F, Yu B, Cui Y D, et al. Chemistry of Materials, 2019, 31, 1289.
43 Liu X Y, Xing K, Li Y, et al. Journal of the American Chemical Society, 2019, 141, 148073.
44 Zhang Z N, Wei Z H, Meng F Y, et al. Chemistry-A European Journal, 2020, 26, 1661.
45 Yao Y Y, Wang C H, Na J B, et al. Small, 2022, 18, 22.
46 Chen L Y, Luque R, Li Y W. Chemical Society Reviews, 2017, 46, 4614.
47 Wang K, Duan Y H, Chen J J, et al. Dalton Transactions, 2022, 51, 685.
48 Wang Z Q, Cohen S M. Chemical Society Reviews, 2009, 38, 1315.
49 Zhang X F, Wang Z G, Ding M L, et al. Journal of Materials Chemistry A, 2021, 9, 233533.
50 Gutiérrez M, Zhang Y, Tan J C. Chemical Reviews, 2022, 122, 104383.
51 Zhang Y, Xiong T, Möslein A F, et al. Applied Materials Today, 2022, 27, 8.
52 Cai G R, Yan P, Zhang L L, et al. Chemical Reviews, 2021, 121, 122786.
53 He T, Kong X J, Li J R. Accounts of Chemical Research, 2021, 54, 3083.
54 He T, Kong X J, Bian Z X, et al. Nature Materials, 2022, 21, 689.
55 Yu L, Ullah S, Zhou K, et al. Journal of the American Chemical Society, 2022, 144, 3766.
56 Ren J Y, Niu Z, Ye Y X, et al. Angewandte Chemie-International Edition, 2021, 60, 237052.
57 Li B, Lu X, Tian Y P, et al. Angewandte Chemie-International Edition, 2022, 61, 6.
58 Ha D G, Wan R M, Kim C A, et al. Nature Materials, 2022, 21, 1275.
59 Babu D J, He G W, Hao J, et al. Advanced Materials, 2019, 31, 6.
60 Xia Q Q, Wang X H, Yu J L, et al. Dalton Transactions, 2022, 51, 9397.
61 Zhang W T, Yao J Z, Sun J, et al. Journal of Molecular Structure, 2024, 1301, 6.
62 Cai H, Lu W G, Yang C, et al. Advanced Optical Materials, 2019, 7, 6.
63 Hu M L, Masoomi M Y, Morsali A. Coordination Chemistry Reviews, 2019, 387, 415.
64 Liu Q F, Chen X L, Wu J H, et al. Langmuir, 2023, 39, 3656.
65 Huang M Y, Liang Z X, Huang J L, et al. ACS Applied Materials & Interfaces, 2023, 15, 111310.
66 Shi H, Yu X, Liu Y C, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2024, 322, 9.
67 Shi W, Li T, Chu N, et al. Materials Science and Engineering, C, 2021, 129, 112404.
68 Sakamoto H, Ito A, Ohtani M. Materials Advances, 2022, 3, 2011.
69 Liang Y Y, Li J Y, Yang S, et al. Polyhedron, 2022, 226, 8.
70 Chen W W, Zhuang Y X, Chen C J, et al. Science China-Materials, 2021, 64, 931.
71 Safdar M, Ghazy A, Lastusaari M, et al. Journal of Materials Chemistry C, 2020, 8, 6946.
72 Tang J P, Liang Z X, Huang M Y, et al. Journal of Materials Chemistry C, 2021, 9, 146286.
73 Ajoyan Z, Bicalho H A, Donnarumma P R, et al. Journal of Materials Chemistry C, 2023, 11, 8929.
74 Yin X B, Sun Y Q, Yu H, et al. Analytical Chemistry, 2022, 94, 4938.
75 Newsome W J, Ayad S, Cordova J, et al. Journal of the American Chemical Society, 2019, 141, 157188.
76 Tonzani S. Nature, 2009, 459, 312.
77 Pust P, Schmidt P J, Schnick W. Nature Materials, 2015, 14, 454.
78 Lee C, Shen C, Cozzan C, et al. Optics Express, 2017, 25, 174807.
79 Wang Z, Zhu C Y, Mo J T, et al. Angewandte Chemie-International Edition, 2019, 58, 9752.
80 Li Y P, Chen Q, Xie L H, et al. ACS Materials Letters, 2022, 4, 2345.
81 Tang Y, Cao W Q, Yao L J, et al. Journal of Materials Chemistry C, 2020, 8, 123083.
82 Qiu Z F, Zhao S M, Xu Z H, et al. Crystal Growth & Design, 2021, 21, 5306.
83 Yin J C, Chang Z, Li N, et al. ACS Applied Materials & Interfaces, 2020, 12, 515897.
84 He C C, Yu H H, Sun J, et al. Dyes and Pigments, 2022, 198, 6.
85 Lu Y T, Wang S, Yu K L, et al. Microporous and Mesoporous Materials, 2021, 319, 9.
86 Wu H L, Tang Y, Cui Y J, et al. Journal of Materials Chemistry C, 2024, 12, 1047.
87 Li M L, Ren G J, Yang W T, et al. Chemical Communications, 2021, 57, 1340.
88 Wen X, Zhang W J, Shang Y, et al. Dyes and Pigments, 2022, 204, 11.
89 Zeng M, Ren A, Wu W B, et al. Chemical Science, 2020, 11, 9154.
90 Li B, Jiang W P, Xu Y B, et al. Dyes and Pigments, 2020, 174, 8.
91 Xiong T, Zhang Y, Donà L, et al. ACS Applied Nano Materials, 2021, 4, 103213.
92 Xiong T, Zhang Y, Amin N, et al. Molecules, 2021, 26, 10.
93 Xing W Z, Zhou H, Han J J, et al. Journal of Colloid and Interface Science, 2021, 604, 568.
94 Lin S H, Liao Z L, Zheng H Q, et al. Journal of Materials Chemistry C, 2024, 12, 2391.
95 Zheng M, Li L, Tian D, et al. ACS Applied Materials & Interfaces, 2023, 15, 234798.
96 Chen J B, Li M S, Sun R R, et al. Advanced Functional Materials, 2024, 34(27), 10.
97 Somjit V, Kaiyasuan C, Thinsoongnoen P, et al. Microporous and Mesoporous Materials, 2021, 328, 7.
98 Wang J, Zhang Y C, Yu Y, et al. Optical Materials, 2019, 89, 209.
99 Zheng H Q, Yang Y, Wang Z, et al. Advanced Materials, 2023, 35, 2300177.
100 Chen Y, Yang G, Liu X, et al. Journal of Materials Chemistry C, 2024, 12, 4316.
[1] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[2] 甘晓明, 苏玉仙, 应文伟, 王建峰, 刘力, 周晓峰, 温世鹏. 稀土上转换发光材料的设计及在光动力治疗中的应用研究进展[J]. 材料导报, 2024, 38(8): 22080243-12.
[3] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[4] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[5] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[6] 李子凡, 张志宾, 董志敏, 刘云海. 金属有机框架材料吸附重金属离子和放射性核素的研究进展[J]. 材料导报, 2023, 37(12): 21060035-10.
[7] 唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
[8] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[9] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[10] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[11] 康宁, 陈灼, 徐双林, 单优, 赵长春. Eu3+,Ce4+掺杂NaAlSiO4的制备及发光性能[J]. 材料导报, 2019, 33(Z2): 10-12.
[12] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[13] 刘博煜, 龚有进, 刘强, 李伟, 吴晓楠, 熊顺顺, 胡胜, 汪小琳. 新型多孔材料在惰性气体Xe/Kr分离中的应用*[J]. 《材料导报》期刊社, 2017, 31(19): 51-59.
[14] 付兵, 欧娅, 刘欢, 顾曼琦, 陈卓, 杨锦瑜. Ba2+共掺杂YPO4∶Tb3+荧光材料的水热合成与荧光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 16-20.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed