Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23100077-12    https://doi.org/10.11896/cldb.23100077
  无机非金属及其复合材料 |
3D打印无机非金属材料增强柔性器件的研究进展
冯妍1,2,†, 葛淑慧1,2,†, 隗立颖1,2,*, 闫建华1,2,*
1 东华大学纺织学院, 上海 201620
2 东华大学纺织面料技术教育部重点实验室, 上海 201620
Research Progress in 3D Printing of Inorganic Non-metallic Materials Reinforced Flexible Devices
FENG Yan1,2,†, GE Shuhui1,2,†, WEI Liying1,2,*, YAN Jianhua1,2,*
1 College of Textiles, Donghua University, Shanghai 201620, China
2 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 21867KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性器件由于其广阔的应用前景得到了迅速发展。3D打印技术在制备复合器件方面具有成本低、无需开模、节约材料和时间等优势,成为构建高性能复合柔性器件的新途径。为了提升器件的综合性能,具有独特力学性能和功能性的无机非金属材料常作为增强体系用以改善材料的力学性能或赋予其新的功能。在此,综述了几种常用的3D打印技术,如熔融沉积建模、粉末床熔融、喷墨打印、立体光刻等。重点介绍了碳材料与陶瓷材料增强柔性复合器件的成型方法、性能及在生物医学、电子信息和智能传感等领域的应用前景。最后,讨论了当前无机非金属材料增强柔性器件面临的挑战和对未来的展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯妍
葛淑慧
隗立颖
闫建华
关键词:  3D打印  柔性器件  碳材料  陶瓷  复合材料    
Abstract: Flexible devices have been developed rapidly due to their broad application prospects. In preparing composite devices, 3D printing technology, with the advantages of low cost, no need to open molds, saving materials and time, has become a new popular way to build high-performance flexible composite devices. During the preparing of these flexible composite devices, inorganic non-metallic materials with unique mechanical properties and functions are often used as reinforcement systems to improve their mechanical properties or give them new functions. In this paper, several commonly used 3D printing techniques are reviewed, including fused deposition modeling, powder bed melting, inkjet printing, stereolithography, etc. The forming methods and properties of carbon and ceramic reinforced flexible composite devices and their application prospects in the fields of biomedicine, electronic information and intelligent sensing are introduced. Finally, the current challenges and prospects of inorganic non-metallic materials for flexible devices are proposed.
Key words:  3D printing    flexible device    carbon material    ceramic    composite material
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TB332  
  TP391.73  
基金资助: 国家自然科学优秀青年科学基金(T2122009);中国博士后科学基金面上资助(2023M730546)
通讯作者:  *隗立颖,东华大学纺织学院博士后。目前主要从事3D打印、碳纳米纤维制备等方面的研究工作。weiliying@dhu.edu.cn;闫建华,东华大学纺织学院研究员、博士研究生导师。主要从事纤维材料科学、纤维化学、纤维基功能器件的交叉科学研究工作。yanjianhua@dhu.edu.cn   
作者简介:  冯妍,东华大学纺织学院硕士研究生,在闫建华教授的指导下进行研究。目前主要研究领域为光固化3D打印陶瓷材料。
葛淑慧,东华大学纺织学院硕士研究生,在闫建华教授的指导下进行研究。目前主要研究领域为柔性氧化物陶瓷材料、柔性固态锂电池电解质材料。
†共同第一作者
引用本文:    
冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
FENG Yan, GE Shuhui, WEI Liying, YAN Jianhua. Research Progress in 3D Printing of Inorganic Non-metallic Materials Reinforced Flexible Devices. Materials Reports, 2025, 39(1): 23100077-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100077  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23100077
1 Debroy T, Wei H L, Zuback J S, et al. Progress in Materials Science, 2018, 92, 112.
2 Sun K, Wei T S, Ahn B Y, et al. Advanced Materials, 2013, 25(33), 4539.
3 Truby R L, Lewis J A. Nature, 2016, 540(7633), 371.
4 Lee A, Hudson A R, Shiwarski D J, et al. Science, 2019, 365(6452), 482.
5 Liu H, Zhang H, Han W, et al. Advanced Materials, 2021, 33(8), 2004782.
6 Wang Q, Han G, Yan S, et al. Materials, 2019, 12(3), 504.
7 Chang P, Mei H, Zhao Y, et al. Carbon, 2022, 187, 375.
8 Chang P, Mei H, Zhang M, et al. Small, 2021, 17(41), 2102639.
9 Mohamed O A, Massod S H, Bhowmik J L. Advances in Manufacturing, 2015, 3, 42.
10 Vu C C, Nguyen T T, Kim S, et al. Materials, 2021, 14(7), 1791.
11 Parandoush P, Lin D. Composite Structures, 2017, 182, 36.
12 Wang X, Jiang M, Zhou Z, et al. Composites Part B:Engineering, 2017, 110, 442.
13 Shinde V V, Celestine A D, Beckingham L E, et al. ACS Applied Polymer Materials, 2020, 2(11), 5048.
14 Chang P, Mei H, Tan Y, et al. Journal of Materials Chemistry A, 2020, 8(27), 13646.
15 Pagac M, Hajnys J, Ma Q P, et al. Polymers, 2021, 13(4), 598.
16 Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Science, 2015, 347(6228), 1349.
17 Gong J, Qian Y, Lu K, et al. Biomedical Materials, 2022, 17(6), 062004.
18 Fang H B, Chen J M. Journal of Beijing University of Technology, 2015 (12), 1775 (in Chinese).
方浩博, 陈继民. 北京工业大学学报, 2015 (12), 1775.
19 Ding H, Dong M, Zheng Q, et al. Molecular Systems Design & Engineering, 2022, 7(9), 1017.
20 Bao Y. Macromolecular Rapid Communications, 2022, 43(14), 2200202.
21 Yap C Y, Chua C K, Dong Z L, et al. Applied Physics Reviews, 2015, 2(4), 041101.
22 Utela B, Storti D, Anderson R, et al. Journal of Manufacturing Processes, 2008, 10(2), 96.
23 King D, Middendorf J, Cissel K, et al. Ceramics International, 2019, 45(2), 2466.
24 Liu S, Shin Y C. Materials & Design, 2019, 164, 107552.
25 Koopmann J, Voigt J, Niendorf T. Metallurgical and Materials Transactions B, 2019, 50, 1042.
26 Zhou Y, Wei W, Yan J, et al. Materials Science and Engineering:A, 2019, 759, 594.
27 Mikolajek M, Friederich A, Kohler C, et al. Advanced Engineering Materials, 2015, 17(9), 1294.
28 Shag M A, Lee D G, Lee B Y, et al. IEEE Access, 2021, 9, 140079.
29 Magdassi S. The chemistry of inkjet inks, World Scientific, Israel, 2009, pp. 220.
30 Tsang A C H, Zhang J, Hui K N, et al. Advanced Materials Technologies, 2022, 7(7), 2101358.
31 Saadi M, Maguire A, Pottackal N T, et al. Advanced Materials, 2022, 34(28), 2108855.
32 Zhang Y, Shi G, Qin J, et al. ACS Applied Electronic Materials, 2019, 1(9), 1718.
33 Zhang Q, Zhou J, Chen Z, et al. Advanced Engineering Materials, 2021, 23(7), 2100068.
34 Liu H, Zhang H, Han W, et al. Advanced Materials, 2021, 33(8), 2004782.
35 Kim K H, Jung C H, Jeong D Y, et al. Metals, 2021, 11(2), 353.
36 Guan S, Ren J, Mooraj S, et al. Journal of Phase Equilibria and Diffusion, 2021, 42(5), 748.
37 Nguyen H D, Pramanik A, Basak A K, et al. Journal of Materials Research and Technology, 2022, 18, 4641.
38 Li Y, Ren X, Zhu L, et al. Polymers, 2023, 15(12), 2692.
39 Parandoush P, Lin D. Composite Structures, 2017, 182, 36.
40 Liu Z, Wang Y, Wu B, et al. The International Journal of Advanced Manufacturing Technology, 2019, 102, 2877.
41 Yao S S, Jin F L, Rhee K Y, et al. Composites Part B:Engineering, 2018, 142, 241.
42 Obradovic J, Boria S, Belingardi G. Composite Structures, 2012, 94(2), 423.
43 Fu K, Yao Y G, Dai J Q, et al. Advanced Materials, 2017, 29(9), 1603486.
44 Li B H, Qi W, Wu Q. Nanotechnology Reviews, 2022, 11(1), 1193.
45 Bianhong L, Wei Q, Qiong W. Nanotechnology Reviews, 2022, 11(1), 1193.
46 Blyweert P, Nicolas V, Fierro V, et al. Carbon, 2021, 183, 449.
47 Rangisetty S, Peel L D. American Society of Mechanical Engineers, 2017, 58257, V001T08A017.
48 Ferreira R T L, Amatte I C, Dutra T A, et al. Composites Part B:Engineering, 2017, 124, 88.
49 Poddar P, Olles M, Cormier D. Polymers, 2022, 14(17), 3553.
50 Spoerk M, Savandaiah C, Arbeiter F, et al. Composites Part a-Applied Science and Manufacturing, 2018, 113, 95104.
51 Qin R S, Sun S Z, Han Z Y, et al. Materials Reports, 2022, 36(17), 200(in Chinese).
秦若森, 孙守政, 韩振宇, 等. 材料导报, 2022, 36(17), 200.
52 Zhang H, Zhou Z, Gao X, et al. Journal of Applied Polymer Science, 2023, 140(2), e53296.
53 Abedi K, Miri S, Gregorash L, et al. Additive Manufacturing, 2022, 54, 102733.
54 Muna I I, Mieloszyk M, Rimasauskiene R, et al. Polymers, 2022, 14(21), 4680.
55 Sayam A, Rahman A N M M, Rahman M S, et al. Carbon Letters, 2022, 32(5), 1173.
56 Gaihre B, Potes M A, Serdiuk V, et al. Biomaterials, 2022, 284, 121507.
57 Ren Y J, Meng F B, Zhang S W, et al. Carbon Energy, 2022, 4(3), 446.
58 Vidakis N, Petousis M, Velidakis E, et al. Advanced Composite Materials, 2022, 31(6), 630.
59 Ni S Y, Sheng J Z, Zhang C, et al. Advanced Functional Materials, 2022, 32(21), 2200682.
60 Tsang C H A, Zhakeyev A, Leung D Y C, et al. Frontiers of Chemical Science and Engineering, 2019, 13(4), 736.
61 Farzan A, Borandeh S, Seppala J. European Polymer Journal, 2022, 167, 111068.
62 Lan X X, Tian Z Q, Shen P K. ACS Applied Nano Materials, 2021, 4(7), 6985.
63 Wang S Z, He H, Ye X, et al. Composites Science and Technology, 2022, 227, 109591.
64 Ma L J, Lei X, Guo X Q, et al. ACS Applied Nano Materials, 2022, 5(5), 7142.
65 Xiang D, Zhang Z X, Wu Y P, et al. Macromolecular Materials and Engineering, 2021, 306(11), 2100437.
66 Zhang Z X, Xiang D, Wu Y P, et al. Applied Composite Materials, 2022, 29(3), 1235.
67 Chen X F, Wang D Y, Fan Y Q, et al. CIESC Journal, 2023, 74(1), 105 (in Chinese).
陈献富, 王冬雨, 范益群, 等. 化工学报, 2023, 74(1), 105.
68 Tao R, Shi J H, Granier F, et al. Applied Materials Today, 2022, 29, 101596.
69 Chang S M, Hur S, Park J, et al. Additive Manufacturing, 2023, 67, 103470.
70 Yan A, Yuan X T, Li Z M, et al. Sensors and Actuators A:Physical, 2021, 332, 113187.
71 Wang Z H, Yuan X T, Yang J K, et al. Nano Energy, 2020, 73, 104737.
72 Renteria A, Balcorta V H, Marquez C, et al. Flexible and Printed Electronics, 2022, 7(1), 015001.
73 Hassan M S, Zaman S, Rodriguez A, et al. Flexible and Printed Electronics, 2022, 7(4), 045011.
74 Zhang B W, Guo C Q, Cao X D, et al. Nano Energy, 2022, 104, 107897.
75 Li H, Song H, Long M J, et al. Nanoscale, 2021, 13(4), 2542.
76 Li H, Song Y S, Kim T W, et al. Macromolecular Materials and Engineering, 2022, 307(9), 2200235.
77 Yan M, Li H, Liu S, et al. ACS Applied Polymer Materials, 2023, 5(7), 4879.
78 Liu S Y, Wang W B, Xu W H, et al. Research, 2022, 2022, 9790307.
79 Li W, Xu F, Dai F, et al. Biomaterials Science, 2023, 11(11), 3976.
80 Cao S, Han J, Sharma N, et al. Materials, 2020, 13(14), 3057.
81 He D, Zhuang C, Xu S, et al. Bioactive Materials, 2016, 1(1), 85.
82 Bissannagari M, Kim T H, Yook J G, et al. Nano Energy, 2019, 62, 645.
83 Blake A J, Kohlmeyer R R, Hardin J O, et al. Advanced Energy Materials, 2017, 7(14), 1602920.
[1] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[2] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[3] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[4] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[5] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[6] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[7] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[8] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[9] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[10] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[11] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[12] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[13] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[14] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[15] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed