Abstract: To investigate the effect of loading rate on the bond capacity between corroded reinforcement and concrete, 16 RC beams (mass loss rate of 0%—8.7%) were tested under different loading rates (0.5—300 mm/min). Based on the above data, the bond strength prediction model was proposed incorporating the effect of loading rate and steel corrosion. Meanwhile, the bond capacity of corroded RC beams was numerically simulated, in which the effects of high loading rates (30—30 000 mm/min, strain rates of 10-4—10-1 s-1) were analyzed. Results show that: (1) loading rates rarely influence the shape of the bond stress-slip curve of corroded RC beams, and the ratio of the bond strength over the resi-dual bond strength; (2) with the increase of loading rate, the bond strength and residual bond strength between corroded steel and concrete significantly increase, and the steel stress at peak within the bond zone obviously increases with gradually approaching the loading end; (3) the proposed bond strength prediction model incorporating the effects of loading rate and steel corrosion can be applied within the loading rates of 0.5—30 000 mm/min.
金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
JIN Liu, ZHANG Xiaowang, GUO Li, WU Jieqiong, DU Xiuli. Effect of Loading Rate on the Bond Capacity Between the Corroded Reinforcing Bars and Concrete. Materials Reports, 2024, 38(8): 22100011-9.
1 Oh B H, Kim S H. Journal of Structural Engineering, 2007, 133, 216. 2 Solomos G, Berra M. Materials and Structures, 2010, 43, 247. 3 Asprone D, Frascadore R, Ludovico D M. Engineering Structures, 2012, 35, 29. 4 Hansen R J, Liepins A A. Journal of the American Concrete Institute, 1962, 59, 563. 5 Eligehausen R, Popov E P, Bertero V V. In: Proceedings of the 7th European Conference on Earthquake Engineering. USA, 1983, pp. 69. 6 Salem A A. Effect of loading rate on bond behavior of reinforcing bars embedded in concrete. Master’s Thesis, Dalian University of Technology, China, 2015(in Chinese). Salem A A. 加载速率对钢筋与混凝土粘结性能的影响. 硕士学位论文, 大连理工大学, 2015. 7 Cheng Y. Bond between reinforcing bars and concrete under impact loa-ding. Master’s Thesis, The University of British Columbia, Canada, 1992. 8 Jacques E, Saatcioglu M. International Journal of Impact Engineering, 2019, 130, 192. 9 Zhang W, Luo D, Chen H, et al. China Journal of Highway and Transport, 2014, 27(12), 58(in Chinese) 张伟平, 罗丹羽, 陈辉, 等. 中国公路学报, 2014, 27(12), 58. 10 Li X, Wu Z, Zheng J, et al. Materials and Structures, 2016, 49, 2097. 11 Zhang R, Jin L, Liu M, et al. International Journal of Impact Enginee-ring, 2022, 163, 104159. 12 Zhang H. Study on dynamic bonding performance between concrete and reinforcing bars. Master’s Thesis, Harbin Institute of Technology, China, 2020(in Chinese). 张昊东. 锈蚀钢筋与混凝土之间动态粘结性能研究. 硕士学位论文, 哈尔滨工业大学, 2020. 13 Hong X, Zhao M. Journal of Tongji University, 2002, 30(7), 792(in Chinese). 洪小健, 赵鸣. 同济大学学报, 2002, 30(7), 792. 14 Zheng X Y. Research on dynamic bond behavior between corroded steel bar and concrete. Ph. D. Thesis, Hohai University, China, 2004(in Chinese). 郑晓燕. 锈蚀钢筋与混凝土动态粘结性能研究. 博士学位论文, 河海大学, 2004. 15 ACI Committee 408. ACI 408R-03, bond and development of straight reinforcing bars in tension, Farmington Hills, USA, 2003. 16 Maaddawy T, Soudki K A. Journal of Materials in Civil Engineering, 2003, 15, 41. 17 Maaddawy T E, Soudki K. Cement and Concrete Composites, 2007, 29, 168. 18 Fu C, Fang D, Ye H, et al. Engineering Structures, 2021, 226, 111392. 19 Lin H, Zhao Y. Construction and Building Materials, 2016, 118, 127. 20 Ngo T T, Tran N T, Kim D J, et al. Construction and Building Mate-rials, 2021, 280, 122449. 21 Almusallam A A, Al-Gahtani A S, Aziz A R, et al. Construction and Building Materials, 1996, 10, 123. 22 Farhan N A, Sheikh M N, Hadi M N S. Structures, 2018, 14, 251. 23 ASTM G1-03, Standard practice for preparing, cleaning, and evaluating corrosion test specimens, ASTM International, USA, 2003. 24 Wu J, Guo L, Jin L, et al. Journal of Harbin Institute of Technology, 2022, 52(10), 109(in Chinese). 吴洁琼, 郭莉, 金浏, 等. 哈尔滨工业大学学报, 2022, 52(10), 109. 25 Wu J, Guo L, Jin L, et al. Journal of Materials in Civil Engineering, 2022, 34(12), 04022346. 26 Gao X, Ren X, Li J, et al. Structural Concrete, 2018, 19, 1806. 27 Li X, Wu Z, Zheng J, et al. Journal of Structural Engineering, 2016, 142, 04016027. 28 中华人民共和国国家质量监督检验检疫总局. GB/T 1499. 2-2018, 钢筋混凝土用钢第2部分: 热轧带肋钢筋, 中国标准出版社, 2018. 29 CEB-FIP. Fib model code for concrete structures 2010, Ernst & Sohn, Germany, 2010. 30 Cadoni E, Dotta M, Forni D, et al. Materials and Structures, 2015, 48, 1803. 31 Wang X, Liu X. Construction and Building Materials, 2006, 20, 177. 32 中华人民共和国住房和城乡建设部. GB/T 50476-2019, 混凝土结构耐久性设计标准, 中国建筑工业出版社, 2019. 33 Liu M, Jin L, Chen F, et al. Engineering Structures, 2022, 56, 113939. 34 Niu D, Lu M, Wang Q. Building Structure, 2002, 32(10), 14(in Chinese). 牛荻涛, 卢梅, 王庆霖. 建筑结构, 2002, 32(10), 14. 35 Yuan Y, Ji Y. Construction and Building Materials, 2009, 23, 2461. 36 Du X, Zhang R, Jin L. Journal of Civil and Environmental Engineering, 2015, 37(1), 73(in Chinese). 杜修力, 张仁波, 金浏. 土木建筑与环境工程, 2015, 37(1), 73. 37 Xue S. FEM analysis on the crack process of concrete cover induced by rebar non-uniform corrosion. Master’s Thesis, Xi’an University of Architecture and Technology, China, 2008(in Chinese). 薛圣广. 钢筋非均匀锈蚀引起的混凝土保护层开裂有限元分析. 硕士学位论文, 西安建筑科技大学, 2008. 38 Liu Y. ACI Materials Journal, 1998, 95, 675. 39 Lu C, Jin W, Liu R. Corrosion Science, 2011, 53, 1337. 40 Chernin L, Val D V, Volokh K Y. Materials and Structures, 2010, 43, 543. 41 Jin L, Yang H, Zhang R, et al. Engineering Structures, 2021, 245, 112913. 42 Coronelli D, Gambarova P. Journal of Structural Engineering, 2004, 130, 1214. 43 Dey V, Bonakdar A, Mobasher B. Cement and Concrete Composites, 2014, 49, 100. 44 Hentz S, Donze F V, Daudeville L. Computers and Structures, 2004, 82, 2509.