Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22100011-9    https://doi.org/10.11896/cldb.22100011
  无机非金属及其复合材料 |
加载速率对锈蚀钢筋与混凝土粘结性能的影响
金浏, 张晓旺, 郭莉, 吴洁琼*, 杜修力
北京工业大学城市减灾与防灾防护教育部重点实验室,北京 100124
Effect of Loading Rate on the Bond Capacity Between the Corroded Reinforcing Bars and Concrete
JIN Liu, ZHANG Xiaowang, GUO Li, WU Jieqiong*, DU Xiuli
Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 12131KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究加载速率对锈蚀钢筋与混凝土粘结性能的影响,开展16根RC梁(质量损失率0%~8.7%)在不同加载速率(0.5~300 mm/min)下的粘结性能测试,据此提出考虑加载速率和钢筋锈蚀影响的粘结强度计算公式,并开展锈蚀钢筋混凝土梁粘结力学行为的数值模拟,分析高加载速率(30~30 000 mm/min,应变率10-4~10-1 s-1)下锈蚀梁的粘结滑移力学行为。研究表明:(1)加载速率对锈蚀钢筋混凝土梁式试件的粘结应力-滑移曲线形状以及粘结强度与残余粘结强度的比值影响不大;(2)随着加载速率的增加,锈蚀钢筋与混凝土的粘结强度和残余粘结强度显著增加,粘结区应力峰值显著增加并逐渐向加载端靠近;(3)本工作提出的考虑加载速率和钢筋锈蚀影响的粘结强度计算公式在0.5~30 000 mm/min的加载速率范围内有很好的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金浏
张晓旺
郭莉
吴洁琼
杜修力
关键词:  加载速率  钢筋锈蚀  粘结性能  数值模拟    
Abstract: To investigate the effect of loading rate on the bond capacity between corroded reinforcement and concrete, 16 RC beams (mass loss rate of 0%—8.7%) were tested under different loading rates (0.5—300 mm/min). Based on the above data, the bond strength prediction model was proposed incorporating the effect of loading rate and steel corrosion. Meanwhile, the bond capacity of corroded RC beams was numerically simulated, in which the effects of high loading rates (30—30 000 mm/min, strain rates of 10-4—10-1 s-1) were analyzed. Results show that: (1) loading rates rarely influence the shape of the bond stress-slip curve of corroded RC beams, and the ratio of the bond strength over the resi-dual bond strength; (2) with the increase of loading rate, the bond strength and residual bond strength between corroded steel and concrete significantly increase, and the steel stress at peak within the bond zone obviously increases with gradually approaching the loading end; (3) the proposed bond strength prediction model incorporating the effects of loading rate and steel corrosion can be applied within the loading rates of 0.5—30 000 mm/min.
Key words:  loading rate    steel corrosion    bond performance    numerical simulation
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52108106);国家重点研发项目(2019YFC1511003)
通讯作者:  *吴洁琼,北京工业大学校聘教授、博士研究生导师。2014—2020 年于北京航空航天大学硕博连读攻读博士学位。目前主要从事混凝土结构疲劳和耐久性等方面的研究工作。主持国家和省部级课题3项,发表学术论文30余篇,以第一或通信作者发表SCI论文14篇、EI论文3篇。jieqiong.wu@bjut.edu.cn   
作者简介:  金浏,北京工业大学教授、博士研究生导师,国家优青、北京市杰青,国家自然科学基金创新研究群体骨干,兼任中国地震学会基础设施防震减灾青年委员会主任委员等。主要研究方向包括混凝土材料与构件尺寸效应、混凝土结构多灾害效应。主持国家重点研发计划等国家级项目6项;发表学术论文280篇,以第一或通信作者发表SCI论文130篇、EI论文120篇,为Elsevier中国高被引学者、斯坦福全球前2%科学家;授权国家发明专利、软件著作权12项;出版中、英文学术专著2项,副主编教材2项;参编国家标准1项。
引用本文:    
金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
JIN Liu, ZHANG Xiaowang, GUO Li, WU Jieqiong, DU Xiuli. Effect of Loading Rate on the Bond Capacity Between the Corroded Reinforcing Bars and Concrete. Materials Reports, 2024, 38(8): 22100011-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100011  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22100011
1 Oh B H, Kim S H. Journal of Structural Engineering, 2007, 133, 216.
2 Solomos G, Berra M. Materials and Structures, 2010, 43, 247.
3 Asprone D, Frascadore R, Ludovico D M. Engineering Structures, 2012, 35, 29.
4 Hansen R J, Liepins A A. Journal of the American Concrete Institute, 1962, 59, 563.
5 Eligehausen R, Popov E P, Bertero V V. In: Proceedings of the 7th European Conference on Earthquake Engineering. USA, 1983, pp. 69.
6 Salem A A. Effect of loading rate on bond behavior of reinforcing bars embedded in concrete. Master’s Thesis, Dalian University of Technology, China, 2015(in Chinese).
Salem A A. 加载速率对钢筋与混凝土粘结性能的影响. 硕士学位论文, 大连理工大学, 2015.
7 Cheng Y. Bond between reinforcing bars and concrete under impact loa-ding. Master’s Thesis, The University of British Columbia, Canada, 1992.
8 Jacques E, Saatcioglu M. International Journal of Impact Engineering, 2019, 130, 192.
9 Zhang W, Luo D, Chen H, et al. China Journal of Highway and Transport, 2014, 27(12), 58(in Chinese)
张伟平, 罗丹羽, 陈辉, 等. 中国公路学报, 2014, 27(12), 58.
10 Li X, Wu Z, Zheng J, et al. Materials and Structures, 2016, 49, 2097.
11 Zhang R, Jin L, Liu M, et al. International Journal of Impact Enginee-ring, 2022, 163, 104159.
12 Zhang H. Study on dynamic bonding performance between concrete and reinforcing bars. Master’s Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
张昊东. 锈蚀钢筋与混凝土之间动态粘结性能研究. 硕士学位论文, 哈尔滨工业大学, 2020.
13 Hong X, Zhao M. Journal of Tongji University, 2002, 30(7), 792(in Chinese).
洪小健, 赵鸣. 同济大学学报, 2002, 30(7), 792.
14 Zheng X Y. Research on dynamic bond behavior between corroded steel bar and concrete. Ph. D. Thesis, Hohai University, China, 2004(in Chinese).
郑晓燕. 锈蚀钢筋与混凝土动态粘结性能研究. 博士学位论文, 河海大学, 2004.
15 ACI Committee 408. ACI 408R-03, bond and development of straight reinforcing bars in tension, Farmington Hills, USA, 2003.
16 Maaddawy T, Soudki K A. Journal of Materials in Civil Engineering, 2003, 15, 41.
17 Maaddawy T E, Soudki K. Cement and Concrete Composites, 2007, 29, 168.
18 Fu C, Fang D, Ye H, et al. Engineering Structures, 2021, 226, 111392.
19 Lin H, Zhao Y. Construction and Building Materials, 2016, 118, 127.
20 Ngo T T, Tran N T, Kim D J, et al. Construction and Building Mate-rials, 2021, 280, 122449.
21 Almusallam A A, Al-Gahtani A S, Aziz A R, et al. Construction and Building Materials, 1996, 10, 123.
22 Farhan N A, Sheikh M N, Hadi M N S. Structures, 2018, 14, 251.
23 ASTM G1-03, Standard practice for preparing, cleaning, and evaluating corrosion test specimens, ASTM International, USA, 2003.
24 Wu J, Guo L, Jin L, et al. Journal of Harbin Institute of Technology, 2022, 52(10), 109(in Chinese).
吴洁琼, 郭莉, 金浏, 等. 哈尔滨工业大学学报, 2022, 52(10), 109.
25 Wu J, Guo L, Jin L, et al. Journal of Materials in Civil Engineering, 2022, 34(12), 04022346.
26 Gao X, Ren X, Li J, et al. Structural Concrete, 2018, 19, 1806.
27 Li X, Wu Z, Zheng J, et al. Journal of Structural Engineering, 2016, 142, 04016027.
28 中华人民共和国国家质量监督检验检疫总局. GB/T 1499. 2-2018, 钢筋混凝土用钢第2部分: 热轧带肋钢筋, 中国标准出版社, 2018.
29 CEB-FIP. Fib model code for concrete structures 2010, Ernst & Sohn, Germany, 2010.
30 Cadoni E, Dotta M, Forni D, et al. Materials and Structures, 2015, 48, 1803.
31 Wang X, Liu X. Construction and Building Materials, 2006, 20, 177.
32 中华人民共和国住房和城乡建设部. GB/T 50476-2019, 混凝土结构耐久性设计标准, 中国建筑工业出版社, 2019.
33 Liu M, Jin L, Chen F, et al. Engineering Structures, 2022, 56, 113939.
34 Niu D, Lu M, Wang Q. Building Structure, 2002, 32(10), 14(in Chinese).
牛荻涛, 卢梅, 王庆霖. 建筑结构, 2002, 32(10), 14.
35 Yuan Y, Ji Y. Construction and Building Materials, 2009, 23, 2461.
36 Du X, Zhang R, Jin L. Journal of Civil and Environmental Engineering, 2015, 37(1), 73(in Chinese).
杜修力, 张仁波, 金浏. 土木建筑与环境工程, 2015, 37(1), 73.
37 Xue S. FEM analysis on the crack process of concrete cover induced by rebar non-uniform corrosion. Master’s Thesis, Xi’an University of Architecture and Technology, China, 2008(in Chinese).
薛圣广. 钢筋非均匀锈蚀引起的混凝土保护层开裂有限元分析. 硕士学位论文, 西安建筑科技大学, 2008.
38 Liu Y. ACI Materials Journal, 1998, 95, 675.
39 Lu C, Jin W, Liu R. Corrosion Science, 2011, 53, 1337.
40 Chernin L, Val D V, Volokh K Y. Materials and Structures, 2010, 43, 543.
41 Jin L, Yang H, Zhang R, et al. Engineering Structures, 2021, 245, 112913.
42 Coronelli D, Gambarova P. Journal of Structural Engineering, 2004, 130, 1214.
43 Dey V, Bonakdar A, Mobasher B. Cement and Concrete Composites, 2014, 49, 100.
44 Hentz S, Donze F V, Daudeville L. Computers and Structures, 2004, 82, 2509.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[5] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[6] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[7] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[8] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[9] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[10] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[11] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[12] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[13] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[14] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[15] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed