Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 69-73    https://doi.org/10.11896/j.issn.1005-023X.2017.024.014
  第一届先进胶凝材料研究与应用学术会议 |
矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制
王 茹,张绍康,王高勇
同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material
WANG Ru, ZHANG Shaokang, WANG Gaoyong
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 1123KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了比较沸石、纳米二氧化硅和稻壳灰这3种矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程作用的差异,分别采用这3种矿物外加剂为调凝材料,并从凝结时间、早期强度、水化进程以及水化产物等角度比较3种矿物外加剂对丁苯聚合物/水泥复合胶凝材料的影响。结果表明,3种矿物外加剂都能促进复合胶凝材料的凝结硬化,大幅缩短凝结时间,提高早期强度。但3种矿物外加剂的调凝效果互不相同,调凝机理也有差异:沸石对AFt的生成有较大的促进作用,它不仅能促进C3A的水化,自身也能与Ca(OH)2反应生成AFt和CSH凝胶;而纳米二氧化硅和稻壳灰对C3S水化的促进作用较强,自身也会与Ca(OH)2反应生成CSH凝胶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王 茹
张绍康
王高勇
关键词:  水泥  丁苯聚合物  沸石  纳米二氧化硅  稻壳灰  凝结硬化    
Abstract: In order to compare the influence of three kinds of mineral admixtures (zeolite, nano-silica (NA) and rice husk ash (RHA)) on the setting and hardening process of styrene-butadiene copolymer/cement composite cementitious material, the three kinds of mineral admixtures was used as set conditioning material respectively. The influence of the mineral admixtures on the composite cementitious material was compared from setting time, early strength, hydration process, hydration products and so forth. The results showed that all the three kinds of mineral admixtures could promote the setting and hardening of the composite cementitious material. The setting time was shortened greatly and the early strength development was improved. But the set conditioning performance of the three kinds of mineral admixtures was different from each other. Moreover, there were some differences in setting conditioning mechanism: Zeolite had a great promoting effect on the formation of AFt, it not only promoted the hydration reaction of C3A, but also reacted with Ca(OH)2 to generate AFt and CSH gel; NA and RHA had a strong promoting effect on the hydration of C3S, it also reacted with Ca(OH)2 to generate CSH gel.
Key words:  cement    styrene-butadiene copolymer    zeolite    nano-silica    rice husk ash    setting and hardening
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU562  
基金资助: 国家自然科学基金(51572196;51202162);中德科学中心资助项目(GZ1290)
作者简介:  王茹:女,1975年生,博士,教授,主要从事聚合物水泥基复合材料以及建筑功能材料方面的研究 E-mail:ruwang@tongji.edu.cn
引用本文:    
王 茹,张绍康,王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 《材料导报》期刊社, 2017, 31(24): 69-73.
WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material. Materials Reports, 2017, 31(24): 69-73.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.014  或          https://www.mater-rep.com/CN/Y2017/V31/I24/69
1 Kong X M, Emmerling S, Pakusch J, et al. Retardation effect of styrene-acrylate copolymer latexes on cement hydration[J]. Cem Concr Res, 2015,75:23.
2 Zhang G F, et al. Effects of vinyl redispersible polymer on cement hydration products[J]. J Build Mater, 2010,13(2):143(in Chinese).
张国防, 等. 乙烯基可再分散聚合物对水泥水化产物的影响[J]. 建筑材料学报, 2010,13(2):143.
3 Ma B G, Tan H B, Xu Y H, et al. Cement hydration process of sodium gluconate[J]. J Wuhan University of Technol, 2008(11):50(in Chinese).
马保国,谭洪波,许永和,等. 葡萄糖酸钠对水泥水化微观结构的影响[J]. 武汉理工大学学报, 2008(11):50.
4 Gretz M, Plank J J. An ESEM investigation of latex film formation in cement pore solution[J]. Cem Concr Res, 2011,41(2):184.
5 Wang R, Shi X X. Influence of styrene-butadiene rubber latex on the early hydration of cement[J]. Cem Wapno Beton, 2016,21(1):36.
6 Li S J, Wu K R. The application study on zeolite in the high performance concrete[J]. Shangdong Build Mater, 2004, 25(1):40(in Chinese).
李淑进,吴科如. 沸石粉及其在高性能混凝土中的应用[J]. 山东建材, 2004, 25(1):40.
7 Nagrockiene D, Girskas G. Research into the properties of concrete modified with natural zeolite addition[J]. Constr Build Mater, 2016,113:964.
8 Feng N L, Jia H W. Study on the inhibition of alkali aggregate reaction in cement concrete by natural zeolite powder[J]. China Concr Cem Products, 1995(2):8(in Chinese).
冯乃廉,郏红卫. 关于利用天然沸石粉抑制水泥混凝土中碱骨料反应的研究[J]. 混凝土与水泥制品, 1995(2):8.
9 Wu T M, Lin H L. The research of high performance concrete incorporated with zeolite powder[J]. Concrete, 2001(10):17(in Chinese) .
武铁明,林怀立. 利用沸石粉配制高性能混凝土的应用研究[J]. 混凝土, 2001(10):17.
10Wang R, Wang G Y, Zhang T, et al. Function of rice husk ash in setting and hardening process of styrene-butadiene rubber latex/cement composite cementitious material[J]. J Chin Ceram Soc, 2017,45(2):191(in Chinese).
王茹,王高勇,张韬,等. 稻壳灰在丁苯聚合物/水泥复合胶凝材料凝结硬化过程中的作用[J]. 硅酸盐学报, 2017,45(2):191.
11Wang R, et al. Influence and mechanism of zeolite on the setting and hardening process of styrene-acrylic ester/cement composite cementitious materials[J]. Constr Build Mater, 2016,125:757.
12Lu Y, Lu J T, He X F, et al. Research progress on preparation and effect on cement hydration of nano silica[J]. Bull Chin Ceram Soc, 2013(7):1335(in Chinese).
路阳, 卢军太, 何小芳,等. 纳米二氧化硅的制备及其对水泥水化影响的研究进展[J]. 硅酸盐通报, 2013(7):1335.
13Xu X, Lu Z. Effect of nano-silicon dioxide on hydration and hardening of portland cement[J]. J Chin Ceram Soc, 2007,35(4):478(in Chinese).
徐迅, 卢忠远. 纳米二氧化硅对硅酸盐水泥水化硬化的影响[J]. 硅酸盐学报, 2007,35(4):478.
14Kong D, Du X, Yang Y, et al. Effect of nano-silica agglomeration on hydration and hardening of cement[J]. J Chin Ceram Soc, 2012,40(11):1599(in Chinese).
孔德玉, 杜祥飞, 杨杨,等. 纳米二氧化硅团聚特性对水泥水化硬化性能的影响[J]. 硅酸盐学报, 2012,40(11):1599.
15Ba Hengjing, et al. Hydration reaction between C3S and fly ash, silica fume, nano-SiO2 and microstructure of hydrated pastes[J]. J Chin Ceram Soc, 2002,30(6):780(in Chinese).
巴恒静, 等. 粉煤灰、硅灰及纳米硅与C3S水化反应产物的显微结构研究[J]. 硅酸盐学报, 2002,30(6):780.
16Ye Q, Zhang Z N, Kong D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J]. J Build Mater, 2003,6(4):381(in Chinese).
叶青, 张泽南, 孔德玉,等. 掺纳米SiO2和掺硅粉高强混凝土性能的比较[J]. 建筑材料学报, 2003,6(4):381.
17Tang M, Ba H J, Li Y. Study on compound effect of silica fume and nano-SiOx for cementing composite materials[J]. J Chin Ceram Soc, 2003,31(5):523(in Chinese).
唐明, 巴恒静, 李颖. 纳米级SiOx与硅灰对水泥基材料的复合改性效应研究[J]. 硅酸盐学报, 2003,31(5):523.18Wang L J, Wang B M. Experimental study on influence of nano SiO2 on properties of portland cement[J]. J Dalian University of Technol, 2003,43(5):666(in Chinese).
王立久, 王宝民. 纳米SiO2对硅酸盐水泥性能影响实验研究[J]. 大连理工大学学报, 2003,43(5):666.
19Collepardi M, Collepardi S, Skarp U, et al. Optimization of silica fume, fly ash and amorphous nano-silica in superplasticized high-performance concrete[C]//Proceedings of the 8th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Las Vegas, 2004:495.
20Wang Peiming, Feng Shuxia, Liu Xianping. Research approaches of cement hydration degree and their development[J]. J Build Mater, 2005,8(6):646(in Chinese).
王培铭, 丰曙霞, 刘贤萍. 水泥水化程度研究方法及其进展[J]. 建筑材料学报, 2005,8(6):646.
21Schindler A K, Folliard K J. Heat of hydration models for cementitious materials[J]. ACI Mater J, 2005,102(1):24.
[1] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[2] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[3] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[8] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[9] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[12] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[13] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[14] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[15] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed