Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 74-78    https://doi.org/10.11896/j.issn.1005-023X.2017.024.015
  第一届先进胶凝材料研究与应用学术会议 |
水溶性单体对聚合物乳液在水泥浆体中稳定性的影响
韩冬冬1,陈维灯1,2,钟世云1
1 同济大学先进土木工程材料教育部重点实验室,上海 201804;
2 福建省建筑科学研究院,福州 350025
Making Latex Suitable for the Modification of Cement Paste by Selecting Water-soluble Monomer
HAN Dongdong1, CHEN Weideng1,2, ZHONG Shiyun1
1 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804;
2 Fujian Academy of Building Research, Fuzhou 350025
下载:  全 文 ( PDF ) ( 1505KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以水泥浆的流动性和筛上残余率为评价指标研究了水溶性单体丙烯酸(AA)、N-羟甲基丙烯酰胺(NMA)、甲基丙烯酸羟乙酯(HEMA)单独使用或组合使用对聚合物乳液在水泥浆中稳定性的影响,并对其影响机制进行探讨。结果表明,不管水溶性单体是单独使用还是组合使用,随其总含量(0%~4%)的增加,聚合物乳液在水泥浆中的稳定性增加。在相同含量时,不同结构的水溶性单体对聚合物乳液在水泥浆中稳定性的贡献大小为NMA>AA>HEMA,与它们的无机性值/有机性值的比值有着很好的一致性。水溶性单体的含量和种类决定着聚合物乳液的钙离子临界凝聚浓度(CCC),聚合物乳液的CCC值越高,其在水泥浆中稳定性越好。水溶性单体越倾向于分布在乳胶粒表面,越有利于聚合物乳液的稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩冬冬
陈维灯
钟世云
关键词:  聚合物乳液  水溶性单体  稳定性  水泥浆    
Abstract: Three water-soluble monomers with different molecular structures were selected to prepare the styrene-acrylate latex used for the modification of cement-based materials. The flowability test and the residue on sieve test of cement paste were applied to evaluate the stability of latex in cement paste. Results show that the stability of latex in cement paste increases with the increase of water-soluble monomer content (0%—4%). At the same content of water-soluble monomer, the latex containing N-methylol acrylamide (NMA) has the best stability when mixed with cement, followed by the latex containing acrylic acid (AA), then the latex containing hydroxyethyl methacrylate (HEMA). Which shows a good accordance with the inorganic value/organic value (I/O) of water-soluble monomer (I/O: NMA>AA>HEMA). It is also found that the content and structure of water-soluble monomer determine the critical coagulation concentration (CCC) of latex, and the higher CCC leads to the better stability of latex in cement paste. The greater the tendency of water-soluble monomer distributed on the surface of polymer particles contributes to the better stability of latex.
Key words:  latex    water-soluble monomer    stability    cement paste
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TQ172.79  
通讯作者:  钟世云:男,1961年生,博士,教授,博士研究生导师,研究方向为聚合物改性水泥基材料、固体废弃物综合利用等 E-mail:syzhong@tongji.edu.cn   
作者简介:  韩冬冬:女,1988年生,博士研究生,研究方向为聚合物改性水泥基材料 E-mail:hdd880216@163.com
引用本文:    
韩冬冬,陈维灯,钟世云. 水溶性单体对聚合物乳液在水泥浆体中稳定性的影响[J]. 《材料导报》期刊社, 2017, 31(24): 74-78.
HAN Dongdong, CHEN Weideng, ZHONG Shiyun. Making Latex Suitable for the Modification of Cement Paste by Selecting Water-soluble Monomer. Materials Reports, 2017, 31(24): 74-78.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.015  或          https://www.mater-rep.com/CN/Y2017/V31/I24/74
1 Jenni A, Holzer L, Zurbriggen R, et al. Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars[J]. Cem Concr Res, 2005,35(1):35.
2 Medeiros M H F, Helene P, Selmo S. Influence of EVA and acrylate polymers on some mechanical properties of cementitious repair mortars[J]. Constr Build Mater, 2009,23(7):2527.
3 Zhao F Q, Li H, Liu S J, et al. Preparation and properties of an environment friendly polymer-modified waterproof mortar[J]. Constr Build Mater, 2011,25(5):2635.
4 Fowler D W. Application of PC and PMC in industry and industrial environment[J]. Adv Mater Res, 2013,687:21.
5 ACI 548.3R-9. Report of polymer-modified concrete[R]. Detroit: American Concrete Institute, 2009:4.
6 Fowler D W. Polymers in concrete: A vision for the 21st century[J]. Cem Concr Compos, 1999,21(5):449.
7 Zhao W J, Zhang Y, Zhao Y Z, et al. Effects of twain-20 on performance of PB-g-PSG latex modified cement mortar and its mechanism of action[J]. J Build Mater, 2014,17(4):566(in Chinese).
赵文杰, 张羽, 赵彦芝,等. 吐温-20对PB-g-PSG胶乳改性水泥砂浆性能影响及作用机理[J]. 建筑材料学报, 2014,17(4):566.8 Chen D J, Li J, Zhang Y. Study on effect of emulsifiers to stability of latex cement system[J]. Drilling Fluid Completion Fluid, 2011,28(5):60(in Chinese).
陈大钧, 李竞, 张颖. 乳化剂对胶乳水泥体系性能的影响[J]. 钻井液与完井液, 2011,28(5):60.
9 Cai Y, Wang P M, Zhong S Y. Influence of coagulation of polymer dispersion on the properties of polymer-modified mortar[J]. Adv Mater Res, 2015,1129:162.
10Merlin F, Guitouni H, Mouhoubi H, et al. Adsorption and heterocoagulation of nonionic surfactants and latex particles on cement hydrates[J]. J Colloid Interface Sci, 2005,281(1):1.
11Yu Z Q, Li B G, Chen H Q, et al. Stability of polymer emulsion[J]. Paint Coat Ind, 1998(11):41(in Chinese).
余樟清, 李伯耿, 陈焕钦,等. 聚合物乳液的稳定性[J]. 涂料工业, 1998(11):41.
12Wang J G, Wang C L, Wu B, et al. Modification of cement mortar by using vinylacetic acid-sodium acrylate anion emulsifier-free latex[J]. J Chin Ceram Soc, 2004,32(1):29(in Chinese).
王金刚, 王成林, 吴波, 等. 醋酸乙烯阴离子型无皂乳液改性水泥砂浆性能的研究[J]. 硅酸盐学报, 2004,32(1):29.
13Wu G F, Tao Y, Yang C, et al. Effect of the content of acrylic acid (AA) on the stability of polyacrylate latex[J]. Chin J Colloid Polym, 2008,26(2):7(in Chinese).
吴广峰, 陶悦, 杨超,等. AA含量对聚丙烯酸酯乳液稳定性的影响[J]. 胶体与聚合物, 2008,26(2):7.
14钟世云, 袁华. 聚合物在混凝土中的应用[M]. 北京: 化学工业出版社, 2003:111.
15Wang F, Liu Y, Hu S. Effect of early cement hydration on the chemical stability of asphalt emulsion[J]. Const Build Mater, 2013,42(9):146.
16Plank J, Gretz M. Study on the interaction between anionic and ca-tionic latex particles and Portland cement[J]. Colloids Surf A: Phy-sicochem Eng Aspects, 2008,330(2):227.
17曹同玉, 刘庆普, 胡今生. 聚合物乳液合成原理性能及应用[M]. 北京: 化学工业出版社, 2007:607.
18魏斌. 有机概念图及其应用[M]. 北京:轻工业出版社, 1988:17.
19Tripathi A K, Tsavalas J G, Sundberg D C. Partitioning of functional monomers in emulsion polymerization: Distribution of carboxylic acid and hydroxy (meth) acrylate monomers between water and polymers[J]. Ind Eng Chem Res, 2014,53(16):6600
20Tripathi A K, Sundberg D C. Partitioning of functional monomers in emulsion polymerization: Distribution of carboxylic acid monomers between water and monomer phases[J]. Ind Eng Chem Res, 2013,52(9):3306.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[3] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[4] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[5] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[6] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[7] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[8] 闵前燊, 辜涛, 何波, 魏仁杰, 刘川北, 张礼华, 刘来宝. 电石渣对CO2拌和水泥浆性能及固碳效能的影响[J]. 材料导报, 2024, 38(23): 23090082-6.
[9] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[10] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[11] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[12] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[13] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[14] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[15] 陈翠翠, 张倩倩, 杨勇, 舒鑫, 冉千平. 低水胶比水泥浆体静动态流变行为的经时变化[J]. 材料导报, 2024, 38(15): 23040237-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed