Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 881-887    https://doi.org/10.11896/j.issn.1005-023X.2018.06.006
  材料研究 |
水热制备葡萄糖炭-涤纶复合纤维及其吸附性能研究
孟露1, 2, 白波1, 2, 王洪伦3, 索有瑞3
1 长安大学环境科学与工程学院,西安 710054;
2 长安大学旱区地下水文与生态效应教育部重点实验室,西安 710054;
3 中国科学院西北高原生物研究所,西宁 810001
Hydrothermal Preparation of Composite Glucose Carbon@Polyester Fiber and Its Adsorption Properties
MENG Lu1, 2, BAI Bo1, 2, WANG Honglun3, SUO Yourui3
1 School of Environmental Science and Engineering, Chang’an University,Xi’an 710054;
;
2 Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang’an University, Xi’an 710054;
;
3 Northwest Plateau Institutes of Biology, Chinese Academy of Sciences, Xining 810001
下载:  全 文 ( PDF ) ( 2111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 葡萄糖纳米炭微球具有较强的吸附能力,但存在不易回收的缺点。以丙烯酸作为交联剂,利用涤纶和葡萄糖溶液经一步水热炭化制备葡萄糖炭-涤纶复合纤维(GC@PFs)。采用SEM、XRD、FTIR分别对该复合纤维的形貌、物化结构进行了表征。结果表明,大量葡萄糖炭微球生成并均匀分散在涤纶纤维表面,其粒径为0.5~1.5 μm。采用Boehm滴定法测得该复合材料表面酸性基团总量为1.95 mmol·g-1,利用Zeta电位测得其等电点在3.6附近。该材料表现出优异的吸附性能,在20 ℃、pH=6.3条件下,对Pb2+的最大理论吸附量可达20.2 mg/g,吸附过程符合准二级动力学,等温吸附过程更符合Freundlich吸附模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟露
白波
王洪伦
索有瑞
关键词:  葡萄糖炭微球  水热炭化  涤纶纤维  吸附    
Abstract: Glucose carbon microspheres have good adsorption capacity, but it is difficult to be reclaimed in the application. To resolve this problem, a novel composite polyester fiber with carbon microspheres was prepared by one-step hydrothermal carbonization using polyester fiber and glucose as raw materials, acrylic acid as cross-linking agent. The morphology and physicochemical structure of the composite fiber structure were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR), respectively. The results showed that a large number of glucose carbon microspheres were dispersed on the surface of polyester fiber uniformly with the particle size of 0.5—1.5 μm. Boehm titration result showed the total amount of surface acidic groups of GC@PFs were 1.95 mmol·g-1, and the isoelectric point (pHpzc), measured by Zeta potential, was about 3.6. Under the condition of 20 ℃, pH=6.3, the maximum theoretical adsorption capacity of GC@PFs to Pb2+ was 20.2 mg/g. The adsorption process could be well described by pseudo-second-order model and Freundlich adsorption model.
Key words:  glucose carbon microspheres    hydrothermal carbonization    polyester fibers    adsorption
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TQ424  
基金资助: 国家自然科学基金(21176031); 中央高校基本科研项目(591310829172201; 310829172202; 310829175001; 310829165027)
通讯作者:  白波,男,1972年生,教授,博士研究生导师,主要研究方向为纳米复合材料 E-mail:baibochina@163.com   
作者简介:  孟露:女,1994年生,硕士研究生,主要研究方向为新型功能材料 E-mail:meng8212@163.com
引用本文:    
孟露, 白波, 王洪伦, 索有瑞. 水热制备葡萄糖炭-涤纶复合纤维及其吸附性能研究[J]. 材料导报, 2018, 32(6): 881-887.
MENG Lu, BAI Bo, WANG Honglun, SUO Yourui. Hydrothermal Preparation of Composite Glucose Carbon@Polyester Fiber and Its Adsorption Properties. Materials Reports, 2018, 32(6): 881-887.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.006  或          https://www.mater-rep.com/CN/Y2018/V32/I6/881
1 Fan Y, Liu P F, Huang Z Y, et al. Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst[J].Journal of Power Sources,2015,280:30.
2 Zheng P, Li H Y, Wu F, et al. Structure-tunable hydrothermal synthesis of composite TiO2@glucose carbon microspheres (TiO2@GCs) with enhanced performance in the photocatalytic removal of acid fuchsin (AF)[J].New Journal of Chemistry,2015,39(11):8787.
3 Liu S X, Sun J, Huang Z H. Carbon spheres/activated carbon composite materials with high Cr(Ⅵ) adsorption capacity prepared by a hydrothermal method[J].Journal of Hazardous Materials,2010,173(1-3):377.
4 Mi Y, Hu W, Dan Y, et al. Synthesis of carbon micro-spheres by a glucose hydrothermal method[J].Materials Letters,2008,62(8-9):1194.
5 Falco C, Baccile N, Titirici M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons[J].Green Chemistry,2011,13(11):3273.
6 Wu S, Ding Y, Zhang X, et al. Synthesis and characterization of carbon thin wires linked carbon hollow spheres encapsulating Ag nano-particles[J].Materials Letters,2008,62(17-18):3301.
7 Zhang P, Yuan J, Fellinger T P, et al. Improving hydrothermal carbonization by using poly(ionic liquid)s[J].Angewandte Chemie International Edition,2013,52(23):6028.
8 Huang Yanhong, Li Mengjuan, Ge Mingqiao. Synthesis of azo dyestuff using terephthalic acid depolymerized from waste polyester fiber[J].New Chemical Materials,2014(3):92(in Chinese).
黄艳红,李梦娟,葛明桥.废弃涤纶纤维解聚产物对苯二甲酸制备偶氮染料[J].化工新型材料,2014(3):92.
9 Pu Yaning, Zhao Chuan, Wang Xueyan. Study on polyester grafted with acrylamide and its adsorption properties of Cu2+[J].Textile Auxiliaries,2015(6):13(in Chinese).
蒲亚宁,赵川,王雪燕.聚酯纤维上丙烯酰胺接枝性能及其对铜离子吸附性能的研究[J].印染助剂,2015(6):13.
10 Dong Jing. Study on preparation of PET@MgFe2O4 and their treatment of dyeing wastewater[D].Chongqing:Southwest University,2015(in Chinese).
董静. MgFe2O4涤纶复合材料的制备及其处理染料废水的研究[D].重庆:西南大学,2015.
11 Wen Z, Wang Q, Zhang Q, et al. Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells[J].Electrochemistry Communications,2007,9(8):1867.
12 Zheng M, Liu Y, Jiang K, et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J].Carbon,2010,48(4):1224.
13 Demircakan R, Baccile N, Antonietti M, et al. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid[J].Chemistry of Materials,2009,21(3):484.
14 Chen Wenting. One-step hydrothermal preparation of glucose-based carbonaceous microspheres and its adsorption for the heavy mental Pb(Ⅱ)[D].Tianjin:Nankai University,2013(in Chinese).
陈文婷. 一步法水热合成葡萄糖基碳微球及其对重金属铅离子的吸附研究[D].天津:南开大学,2013.
15 Zhou Tingting. Research on the preparation of nano silver and its application in the antibacterial finish of polyester fabrics[D].Suzhou:Soochow University,2012(in Chinese).
周婷婷. 纳米银的制备及其对涤纶织物的抗菌整理研究[D].苏州:苏州大学,2012.
16 Zhang Xianmiao, Dong Jiwen. Rapid identification of several common industrial fibers with FTIR ATR[J].Technical Textiles,2015(9):31(in Chinese).
张贤淼,董激文.利用FTIR-ATR快速鉴别几种常见产业用纤维[J].产业用纺织品,2015(9):31.
17 Zhao R, Wang Y, Li X, et al. Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide[J].ACS Sustainable Chemistry & Engineering,2016,4(5):2584.
18 Zhang Z B, Liu Y H, Cao X H, et al. Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous solution[J].Journal of Radioanalytical and Nuclear Chemistry,2013,295(3):1775.
19 Li T, Shen J, Li N, et al. Facile and novel hydrothermal preparation of functionalised carbon microspheres from glucose by using graphene sheets as a substrate[J].Materials Letters,2012,89(25):202.
20 Wang C, Yan J, Li Z, et al. Investigation on raspberry-like magne-tic-hollow silica nanospheres and its preliminary application for drug delivery[J].Journal of Nanoparticle Research,2013,15(9):1.
21 Lin F, Wang Y, Lin Z. One-pot synthesis of nitrogen-enriched carbon spheres for hexavalent chromium removal from aqueous solution[J].RSC Advances,2016,6(39):33055.
22 Huang F C, Lee C K, Han Y L, et al. Preparation of activated carbon using micro-nano carbon spheres through chemical activation[J].Journal of the Taiwan Institute of Chemical Engineers,2014,45(5):2805.
23 Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J].Carbon,1994,32(5):759.
24 Wu Q, Li W, Liu S. Carboxyl-rich carbon microspheres prepared from pentosan with high adsorption capacity for heavy metal ions[J].Materials Research Bulletin,2014,60:516.
25 Mallampati R, Li X, Valiyaveettil S, et al. Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water[J].ACS Sustainable Chemistry & Engineering,2015,3(6):1117.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[7] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[8] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[9] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[10] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[11] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[12] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[13] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[14] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[15] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed