Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 888-893    https://doi.org/10.11896/j.issn.1005-023X.2018.06.007
  材料研究 |
酒石酸铁改性废旧棉织物Fenton反应催化剂的制备及其应用性能研究
刘广增1, 董永春1, 2, 李冰3, 王鹏1, 崔桂新1, 4
1 天津工业大学纺织学院纺织化学与生态学研究中心,天津 300387;
2 天津工业大学先进纺织复合材料重点实验室, 天津 300387;
3 广西进出口检验检疫局技术中心,南宁 530021;
4 中国纺织科学研究院江南分院,绍兴 312071
Fabrication and Application Performance of Ferric-tartrate-modified Waste Cotton Fabric Serving as Fenton Catalyst
LIU Guangzeng1, DONG Yongchun1, 2, LI Bing3, WANG Peng1, CUI Guixin1, 4
1 Textile Chemistry &
Ecology, School of Textiles, Tianjin Polytechnic University, Tianjin 300387;
;
2 Key Laboratory of Advanced Textile Composite of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387;
3 Inspection and Quarantine Technology Center, Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning 530021;
4 Jiangnan Branch, China Textile Academy, Shaoxing 312071
下载:  全 文 ( PDF ) ( 1927KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了促进废旧棉织物的综合利用,使用酒石酸通过轧—烘—焙工艺对废旧棉织物进行改性反应以在其表面引入羧酸基,然后将改性后的废旧棉织物与Fe3+反应制备酒石酸铁改性废旧棉织物,重点考察了酒石酸和NaH2PO4浓度以及焙烘温度对废旧棉织物表面羧酸基和Fe3+含量的影响,并使用SEM和FTIR等对其进行表征。最后将酒石酸铁改性废旧棉织物作为非均相Fenton反应光催化剂对偶氮染料酸性红88进行氧化降解反应并评价其催化活性。结果表明,酒石酸与棉纤维表面羟基通过酯化反应而引入的羧酸基,能进一步与Fe3+发生配位反应,由此可以制备酒石酸铁改性废旧棉织物。酒石酸和NaH2PO4浓度的增加以及焙烘温度的升高均能够显著增加酒石酸铁改性废旧棉织物表面Fe3+含量。当酒石酸浓度为10%(质量分数)、NaH2PO4浓度为5%(质量分数)和焙烘温度为180 ℃时,废旧棉织物的改性效果最好。酒石酸铁改性废旧棉织物在光辐射条件下能够加速染料降解反应,其表面Fe3+含量的增加能够提高其催化活性。此外,H2O2浓度为4.5 mmol·L-1、pH值为6及较高温度时染料降解效果最佳。棉纤维表面的染料对酒石酸铁改性废旧棉织物的光催化活性略有影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘广增
董永春
李冰
王鹏
崔桂新
关键词:  废旧棉织物  酒石酸  Fe3+  催化  染料降解    
Abstract: In order to enhance the integrated utilization of waste cotton fabric, tartaric acid was used to modify the waste cotton fabric through pad-dry-cure process for introducing surface hydroxyl groups, which coordinated with Fe3+ ions to produce the ferric tartrate-modified cotton fabric. Effect of concentrations of tartaric acid and NaH2PO4, as well as curing temperature on hydroxyl groups and Fe content on the surface of ferric tartrate-modified cotton fabric was studied. After characterization by SEM and FTIR, ferric tartrate-modified cotton fabric was evaluated as heterogeneous photo-Fenton catalysts for the oxidative degradation of Acid Red 88. The results indicated that carboxyl groups produced from esterfication between tartaric acid and cotton fiber coordinated with Fe3+ ions to prepare the ferric tartrate-modified cotton fabric. Increasing concentrations of tartaric acid and NaH2PO4 as well as elevation of curing temperature enhanced Fe content on the surface of ferric tartrate-modified cotton fabric. The best modification of cotton fabric was obtained at the condition of 10 wt% tartaric acid and 5 wt% NaH2PO4 as well as curing temperature of 180 ℃. The ferric tartrate-modified cotton fabric could accelerate the dye degradation under light irradiation. Higher Fe content could increase its catalytic activity. Besides, increasing H2O2 concentration favored the dye degradation. The highest degradation efficiency of the dye was obtained when 4.5 mmol·L-1 H2O2 was used at pH=6 with higher temperature. The colorants dyed on the ferric tartrate-mo-dified cotton fabric showed a slight effect on its catalytic performance.
Key words:  waste cotton fabric    tartaric acid    iron(Ⅲ) ions;    catalysis    dye degradation
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TS195.2  
基金资助: 江苏省高层次创新创业人才计划项目(2015-340); 绍兴市公益性技术应用研究项目(2015B7002)
通讯作者:  董永春,男,1963年生,教授,博士研究生导师,主要从事环境净化与催化材料的研究 E-mail:teamdong@sina.cn   
作者简介:  刘广增:男,1992年生,硕士研究生,主要从事环境净化与催化材料的研究 E-mail:flying318sky@163.com
引用本文:    
刘广增, 董永春, 李冰, 王鹏, 崔桂新. 酒石酸铁改性废旧棉织物Fenton反应催化剂的制备及其应用性能研究[J]. 材料导报, 2018, 32(6): 888-893.
LIU Guangzeng, DONG Yongchun, LI Bing, WANG Peng, CUI Guixin. Fabrication and Application Performance of Ferric-tartrate-modified Waste Cotton Fabric Serving as Fenton Catalyst. Materials Reports, 2018, 32(6): 888-893.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.007  或          https://www.mater-rep.com/CN/Y2018/V32/I6/888
1 Chen Xuhong , et al. The recycling way of waste cotton textiles[J].China Textile Leader,2013(9):53(in Chinese).
陈旭红,等.废旧棉纺织品的回收再利用技术进展[J].纺织导报,2013(9):53.
2 Inoue S, Uno S, Minowa T. Carbonization of cellulose using the hydrothermal method[J].Journal of Chemical Engineering of Japan,2008,41(3):210.
3 Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose[J].Carbon,2009,47(9):2281.
4 Zhu Shengdong, Wu Yuanxin, Yu Ziniu, et al. Progress in production of fuel ethanol from lignocellulosic materials[J].Chemistry & Bioengineering,2003,20(5):8(in Chinese).
朱圣东,吴元欣,喻子牛,等.植物纤维素原料生产燃料酒精研究进展[J].化学与生物工程,2003,20(5):8.
5 Jin M, Lau M W, Balan V, et al. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST)[J].Bioresource Technology,2010,101(21):8171.
6 Li Ming, Xu Xiuwen. A research on strength loss of cotton fabric by polycarboxylic acid finish[J].Dyeing & Finishing,2001,27(3):5(in Chinese).
李明,徐秀雯.棉织物多元羧酸整理后强力损伤的研究[J].印染,2001,27(3):5.
7 Yang C Q, Wang X, Kang I S. Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid[J].Textile Research Journal,1997,67(5):334.
8 Li B, Dong Y, Li L. Preparation and catalytic performance of Fe(III)-citric acid-modified cotton fiber complex as a novel cellulose fiber-supported heterogeneous photo-Fenton catalyst[J].Cellulose,2015,22(2):1295.
9 Xiaohong G, Yang C Q. FTIR spectroscopy study of the formation of cyclic anhydride intermediates of polycarboxylic acids catalyzed by sodium hypophosphite[J].Textile Research Journal,2000,70(1):64.
10 Yang C Q. FT-IR spectroscopy study of the ester crosslinking me-chanism of cotton cellulose[J].Textile Research Journal,1991,61(8):433.
11 Dong Y C, Han Z B, Liu C Y, et al. Preparation and photocatalytic performance of Fe (Ⅲ)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation[J].Science of the Total Environment,2010,408,2245.
12 Sang Y O, Dong I Y, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J].Carbohydrate Research,2005,340(15):2376.
13 潘才元.功能高分子[M].北京:科学出版社,2006:55.
14 Zhu J, Gao Q, Zhi C. Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide[J].China Synthetic Resin & Plastics,2006,81(3):236.
15 Cui Guixin, Dong Yongchun, Wang Peng, et al. Preparation of Fe-citric acid modified cotton fiber complex and their catalytic effect for dye degradation[J].Journal of Functional Materials,2016,47(9):9197(in Chinese).
崔桂新,董永春,王鹏,等.柠檬酸改性棉纤维铁配合物的制备及其对染料的光催化降解作用[J].功能材料,2016,47(9):9197.
16 He Feng, Zhou Na, Lei Lecheng, et al. Treatment of dying wastewater by the photo-fenton process[J].Technology of Water Treatment,2004,30(6):344(in Chinese).
何锋,周娜,雷乐成,等.光助Fenton氧化处理染料废水的实验研究[J].水处理技术,2004,30(6):344.
17 Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2, process[J].Dyes & Pigments,2004,62(3):269.
18 Li B, Dong Y, Ding Z. Photoassisted degradation of CI Reactive Red 195 using an Fe(III)-grafted polytetrafluoroethylene fibre complex as a novel heterogeneous Fenton catalyst over a wide pH range[J].Coloration Technology,2013,129(6):403.
19 Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)[J].Chemosphere,2002,49(4):413.
20 陈英.染整工艺实验教程[M].北京:中国纺织出版社,2009:64.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[3] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[6] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[9] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[10] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[11] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[12] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[13] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[14] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[15] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed