Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 894-898    https://doi.org/10.11896/j.issn.1005-023X.2018.06.008
  材料研究 |
铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究
陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰
西安近代化学研究所,西安 710065
Preparation and Microstructure of Aluminum Powder/Polytetrafluoroethylene Mechanical Activated Energetic Composites
TAO Jun, WANG Xiaofeng, HAN Zhongxi, FENG Bo, NAN Hai, XIE Zhongyuan, HUANG Yafeng
Xi’an Modern Chemistry Research Institute, Xi’an 710065
下载:  全 文 ( PDF ) ( 2164KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究铝粉/聚四氟乙烯机械活化含能材料的微观性能,利用自制高能球磨机制备了不同球磨时间的机械活化含能材料,利用场发射扫描电镜分析了机械活化含能材料的微观形貌及表面元素分布,利用X射线衍射仪和红外光谱仪表征了材料的物相结构和化学结构。进一步利用分子动力学手段研究了铝粉的不同晶面与聚四氟乙烯的相互作用。结果表明,在长时间的强机械能作用下,聚四氟乙烯和铝粉紧密接触在一起,形成直径为100 μm左右的薄片状复合物;球磨20 min以后,铝粉和聚四氟乙烯分散得较为均匀,但离完全均匀分散还有一定差距;高能球磨仅能引起铝粉/聚四氟乙烯复合材料微观物理结构的变化;分子动力学计算显示,铝粉的不同晶面与聚四氟乙烯相互作用的过程中,范德华力占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶俊
王晓峰
韩仲熙
冯博
南海
谢中元
黄亚峰
关键词:  机械活化含能材料  铝粉  聚四氟乙烯(PTFE)  球磨  微观性能    
Abstract: In order to study the properties of aluminum powder/polytetrafluoroethylene (Al/PTFE) mechanical activated energetic composites (MAECs), MAECs were prepared by high energy ball milling with different milling time. The micro morphology and surface element distribution of MAECs were analyzed. The phase structure and chemical structure of the materials were also characterized. Then the interaction between PTFE and different crystal surfaces of Al was studied by molecular dynamics. Research results showed that PTFE contact closely with Al to form a thin sheet with diameter of about 100 μm after a long period of strong mechanical energy. With ball milling more than 20 min, Al and PTFE dispersed uniformly, but there was a certain gap with the absolute dispersion. High energy ball milling brings only a change in the microstructure of Al/PTFE composites. The interaction between PTFE and different crystal surfaces of Al were dominated by Van der Waals’ force.
Key words:  mechanical activated energetic composites    aluminum powder    polytetrafluoroethylene(PTFE)    ball milling    micro properties
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TJ55  
基金资助: 国家自然科学基金(11502194)
通讯作者:  王:晓峰,男,1967年生,博士,研究员,博士研究生导师,研究方向为混合炸药及其装药技术 E-mail:wangxf_204@163.com   
作者简介:  陶俊:男,1987年生,博士研究生,研究方向为混合炸药及其装药技术 E-mail:taojun4712230@126.com
引用本文:    
陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
TAO Jun, WANG Xiaofeng, HAN Zhongxi, FENG Bo, NAN Hai, XIE Zhongyuan, HUANG Yafeng. Preparation and Microstructure of Aluminum Powder/Polytetrafluoroethylene Mechanical Activated Energetic Composites. Materials Reports, 2018, 32(6): 894-898.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.008  或          https://www.mater-rep.com/CN/Y2018/V32/I6/894
1 Dolgoborodova A Y. Mechanically activated oxidizer-fuel energetic composites[J].Combustion,Explosion,and Shock Waves,2015,51(1):86.
2 Sippel R, Son S F, Groven L J. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation[J].Propellants,Explosives,Pyrotechnics,2013,38(2):286.
3 Streletskii A N, Kolbanev I V, Leonov A V, et al. Defective structure and reactivity of mechanoactivated magnesium/fluoroplastic energy-generating composites[J].Colloid Journal,2015,77(2):213.
4 Dreizin E L.Metal based reactive nanomaterial[J].Progress in Energy and Combustion Science,2009,35(2):141.
5 Monk I, Williams R. Electro-static discharge ignition of monolayers of nanocomposite thermite powders prepared by arrested reactive milling[J].Combustion Science and Technology,2015,187(8):1276.
6 Zou Meishuai, Du Xujie, Li Xiaodong, et al. Research progress in super thermite prepared by arrested reactive milling[J].Acta Armamentarii,2013,34(6):783(in Chinese).
邹美帅,杜旭杰,李晓东,等.反应抑制球磨法制备超级铝热剂的研究进展[J].兵工学报,2013,34(6):783.
7 Umbrajkar S M, Schoenitz M, Dreizin E L. Control of structural refinement and composition in Al-MoO3 nanoeomposites prepared by arrested reactive milling[J].Propellants,Explosives,Pyrotechnics,2006,31(5):382.
8 Umbrajkar S M, Seshadri S, Schoenitz M, et al. Aluminum-rich Al-MoO3 nanoeomposite powders prepared by arrested reactive milling[J].Journal of Propulsion and Power,2008,24(2):192.
9 Lerner M I, Glazkova E A, Vorozhtsov A B, et al. Passivation of aluminum nanopowders for use in energetic materials[J].Russian Journal of Physical Chemistry B,2015,9(1):56.
10 André B, Coulet M V, Esposito P H, et al. High-energy ball milling to enhance the reactivity of aluminum nanopowders[J].Materials Letters,2013,110(110):108.
11 Mostovshchikov A V, Ilyin A P,Zakharova M A. Structural and energy state of electro-explosive aluminum nanopowder[J].Key Engineering Materials,2016,712:215.
12 Chen Yu,Hao Haixia,Xu Siyu,et al. Progress in the study of stable structure of difluoramino energetic materials[J].Journal of Ordnance Equipment Engineering,2017(6):125(in Chinese).
陈羽,郝海霞,徐司雨,等.稳定结构的二氟氨基含能材料研究进展[J].兵器装备工程学报,2017(6):125.
13 Lu Yanling,Zhao Ran,Gao Xinbao,et al. Surface disposing Al powder with silane coupling agents[J].Journal of Ordnance Equipment Engineering,2016(6):57(in Chinese).
鲁彦玲,赵然,高欣宝,等.高能混合炸药用铝粉的硅烷偶联剂表面改性研究[J].兵器装备工程学报,2016(6):57.
14 Koch E C. Metal-fluorocarbon based energetic materials[M].Weinheim:Wiley-VCH Verlag GmbH & Co.KGaA,2012.
15 Miller H A, Kusel B S, Danielson S T, et al. Metastable nanostructured metallized fluoropolymer composites for energetics[J].Journal of Materials Chemistry A,2013,1:7050.
16 Losada M, Chaudhurt S. Theoretial study of elementary steps in the reactions between aluminum and teflon fragments under combustive environments[J].Journal of Physical Chemistry A,2009,4(113):5933.
17 Michelle L, Pantoya, Steven W D. The influence of alumina passivation on nano-Al/Teflon reactions[J].Thermochimica Acta,2009,493:109.
18 Sippel T R, Son S F, Groven L J. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation[J].Propellants,Explosives,Pyrotechnics,2013,38:286.
19 Dolgoborodov Y A, Makhov M N, Kolbanev I V, et al. Detonation in an aluminum-teflon mixture[J].Journal of Experimental and Theoretical Physics Letters,2005,81(7):211.
20 Wang J, Qiao Z Q, Yang Y T, et al. Core-shell Al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials[J].Chemistry:A European Journal,2016,22(1):279.
21 Wang J, Jiang X J, Zhang L, et al. Design and fabrication of energetic superlattice like-PTFE/Al with superior performance and application in functional micro-initiator[J].Nano Energy,2015,12:597.
[1] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[2] 李萌, 艾建平, 胡丽玲, 程丽红, 帅亚萍, 罗司玲, 周泽华, 陈智琴, 李文魁. YSZ多孔陶瓷的孔隙结构特征及压缩强度研究[J]. 材料导报, 2023, 37(24): 22060249-7.
[3] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[4] 刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
[5] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[6] 朱高凡, 杨新异, 曹海波, 黄群英. 球磨时间和退火温度对氧化物弥散强化合金粉末结构的影响[J]. 材料导报, 2023, 37(17): 22030177-6.
[7] 吴少鹏, 蔡晓兰, 周蕾, 栗文浩, 刘旭升, 王延坤. Cu粉预球磨和烧结工艺对Cu/6061Al界面结构的调控[J]. 材料导报, 2023, 37(14): 21120190-6.
[8] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[9] 袁江杭, 曲兆明, 赵芳, 许宝才, 孙肖宁, 王庆国. 片形羰基铁粉热处理工艺及其吸波性能研究[J]. 材料导报, 2022, 36(18): 21040268-6.
[10] 刘员环, 曾美琴, 鲁忠臣, 朱敏. 等离子球磨技术在材料制备中的应用[J]. 材料导报, 2022, 36(15): 20120251-9.
[11] 唐卫岗, 胡岭, 黄世盛, 陈融, 郭冰, 沈杭燕. 高能球磨法制备微米银片的工艺研究[J]. 材料导报, 2021, 35(z2): 428-432.
[12] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[13] 谢锐, 吕铮, 徐长伟, 刘春明. 热等静压温度对雾化合金粉制备的9Cr-ODS钢组织和性能的影响[J]. 材料导报, 2021, 35(8): 8169-8178.
[14] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[15] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed