Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 434-442    https://doi.org/10.11896/j.issn.1005-023X.2018.03.014
     材料综述 |
聚合物基纳米复合材料的界面作用研究进展
吴英柯1,马建中2,鲍艳2
1 陕西科技大学材料科学与工程学院,西安 710021
2 陕西科技大学轻工科学与工程学院,中国轻工业皮革清洁生产重点实验室,西安 710021
Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites
Yingke WU1,Jianzhong MA2,Yan BAO2
1 School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
2 Key Laboratory of Leather Cleaner Production, China National Light Industry, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
下载:  全 文 ( PDF ) ( 3023KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

将聚合物与纳米粒子复合制备性能优异的聚合物基纳米复合材料是近20年来科学界的研究热点,其中聚合物与纳米粒子间的界面作用对复合材料的性能起着关键性作用。从界面结构、力学性能、热性能及计算机仿真模拟等方面综述了聚合物基纳米复合材料的界面研究进展,并对这一领域的研究进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴英柯
马建中
鲍艳
关键词:  聚合物  纳米粒子  复合材料  界面作用    
Abstract: 

Polymer matrix nanocomposites with excellent properties which are prepared from polymer and nanoparticles is a hot research topic during the past two decades, and the interfacial interaction between polymer and nanoparticles is of key importance for the properties of the composites. Based on a rich amount of literatures, the progress of interfacial interaction about polymer based nanocomposites is reviewed from the perspectives interface structure, mechanical properties, thermal properties, and computer simulation in this paper, and meanwhile, the research prospect of this field is discussed.

Key words:  polymer    nanoparticle    composite    interface interaction
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2017YFB0308602);国家自然科学基金(21376145);陕西省科技统筹创新工程重点实验室资助项目(2013SZS10-Z02);陕西科技大学科研创新团队资助项目(TD12-03)
作者简介:  吴英柯:女,1985年生,博士研究生,研究方向为有机/无机纳米复合材料 E-mail: einske@163.com|马建中:通信作者,男,1960年生,教授,博士研究生导师,研究方向为有机/无机纳米复合材料的制备与应用 E-mail: majz@sust.edu.cn|鲍艳:女,1981年生,教授,博士研究生导师,研究方向为有机/无机复合材料 E-mail: baoyan0611@126.com
引用本文:    
吴英柯,马建中,鲍艳. 聚合物基纳米复合材料的界面作用研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 434-442.
Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites. Materials Reports, 2018, 32(3): 434-442.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.014  或          https://www.mater-rep.com/CN/Y2018/V32/I3/434
图1  聚合物/金属复合材料的界面结构示意图:(a)聚合物/金属复合材料的界面;(b)聚合物与金属发生弱结合时,聚合物在金属表面的吸附特性;(c)聚合物与金属发生强结合时,聚合物在金属表面的吸附特性
图2  PVA/GO复合材料的拉曼光谱(激发波长为785 nm)(电子版为彩图)
图3  (a)ENR乳胶粒组装在GO片层的内外两个表面和(b)GO片层组装在ENR乳胶粒的表面的透射电镜图
图4  (a)PVA, (b)PVA/GO, (c)PVA/rGO/0.2PEI, (d)PVA/rGO/0.5PEI,(e)PVA/rGO/1.0PEI, (f)PVA/rGO/2.0PEI断面的SEM照片
Method Features Advantages Disadvantages
FTIR Reflecting chemical reaction among interfaces through band
strength changes and number of contact points (anchor number)
Studying interface
from a chemical
point of view
The interface can
not be observed
intuitively
NMR[40] Reflecting chemical reaction among interfaces through
nanoparticle’s surface grafting or adsorption on polymer chains
Raman Reflecting chemical reaction among interfaces through surface
adsorption molecules arranging orientation and structure
XPS[43] Reflecting interface combination and achieving the qualitative
analysis of surface elements (including the price) through
binding energy of electrons
Studying interface
from the photoelectron
energy
The interface can
not be observed
intuitively
SEM

TEM
Reflecting interface through roughness of
cross-section and compatibility
Reflecting interface action via microstructure of
nanoparticles and latex particles
Observing the
interface directly
The interface can not
be quantitatively
studied from a
chemical point of view
AFM

SANS

XRD
Thickness of crosslinked interface layer can be estimated
by surface roughness
Interfacial action can be studied by particle dispersibility
and interfacial phase
Interfacial action can be studied by the width and position of peaks
The thickness of the
interface layer can
be calculated
The interface can not
be observed intuitively
and quantitatively
studied from a
chemical point of view
表1  聚合物基纳米复合材料各种表征方法的比较
图5  PLA及其复合材料的动态力学分析
Method Features Advantages Disadvantages
Rheology Interface can be analyzed via viscosity, stress,
storage modulus, loss modulus and yield value
Researching interface through
rheological parameters
The interface can
not be observed
intuitively
DMA Researching interface through analysis of tanδ,
storage modulus, Tg ,etc.
Researching interface through
dynamic mechanical parameters
Static mechanics
analysis
Researching interface through tensile
modulus,etc.
Interfacial forces can be compared
表2  聚合物基纳米复合材料各种力学性能研究方法的比较
图6  PPS/SiO2纳米复合材料的DSC曲线
Method Advantages Disadvantages
DSC Studying strength of the interface action through Tg
TGA Thickness of polymer adsorbed on nanoparticles’
surface can be known
The interface can not be
observed intuitively
表3  聚合物基纳米复合材料各种热性能研究方法的比较
图7  PE(左图)及PEO(右图)聚合物链在6%功能化碳纳米管上的吸附构象(a—映射OH SWCNT,b—映射O SWCNT,c—随机混合SWCNT,d—随机OH SWCNT,e—随机O SWCNT)
图8  (a)CNTs及(b)BNNTs表面吸附聚合物链的构象
图9  芳纶和不同纳米管的相互作用能量
1 Ma J, Liu J, Bao Y , et al. Synjournal of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property[J]. Ceramics International, 2013,39(3):2803.
2 Zhang W, Ma J, Gao D , et al. Preparation of amino-functionalized graphene oxide by Hoffman rearrangement and its performances on polyacrylate coating latex[J]. Progress in Organic Coatings, 2016,94:9.
3 Merkel T C, Freeman B D, Spontak R J , et al. Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes[J]. Chemistry of Materials, 2016,15(1):109.
4 Shaohui L, Jiwei Z, Jinwen W , et al. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers[J]. ACS Applied Materials & Interfaces, 2016,6(3):1533.
5 Bodakhe S, Verma S, Garkhal K , et al. Injectable photocrosslin-kable nanocomposite based on poly(glycerol sebacate) fumarate and hydroxyapatite: Development, biocompatibility and bone regeneration in a rat calvarial bone defect model[J]. Nanomedicine, 2017,8(11):1777.
6 Subramani N K, Nagaraj S K, Shivanna S , et al. Highly flexible and visibly transparent poly(vinyl alcohol)/calcium zincate nanocompo-site films for UVA shielding applications as assessed by novel ultraviolet photon induced fluorescence quenching[J]. Macromolecules, 2016,49(7):2791.
7 Jeon H, Park S, Nam S , et al. Spin self-assembled clay nanocomposite passivation layers made from a photocrosslinkable poly(vinyl alcohol) and Na +-montmorillonite enhance the environmental stabi-lity of organic thin-film transistors [J]. Chinese Journal of Chemistry, 2016,34(11):1103.
8 Imran S M, Shao G N, Haider M S , et al. Carbon nanotube-based thermoplastic polyurethane-poly(methyl methacrylate) nanocompo-sites for pressure sensing applications[J]. Polymer Engineering & Science, 2016,56(9):1031.
9 Lizundia E, Ruiz Rubio L, Vilas J L , et al. Poly(l-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications[J]. Journal of Applied Polymer Science, 2016,133(2):42426.
10 Lei J, Tao Y, Yan L , et al. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen[J]. Scientific Reports, 2016,6:21017.
11 Liu C, Yan H, Lv Q , et al. Enhanced tribological properties of aligned reduced graphene oxide-Fe3O4 @polyphosphazene/bismalei-mides composites[J]. Carbon, 2016,102:145.
12 Bao Y, Shi C, Ma J , et al. Double in-situ synjournal of polyacrylate/nano-TiO2 composite latex[J]. Progress in Organic Coatings, 2015,85:101.
13 Ma J, Xu Q, Zhou J , et al. Nano-scale core-shell structural casein based coating latex: Synjournal, characterization and its biodegra-dability[J]. Progress in Organic Coatings, 2013,76(10):1346.
14 Bao Y, Ma J, Li N . Synjournal and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel[J]. Carbohydrate Polymers, 2011,84(1):76.
15 Xue C H, Ma J Z . Long-lived superhydrophobic surfaces[J]. Journal of Materials Chemistry A, 2013,1(13):4146.
16 Xu Q, Fan Q, Ma J , et al. Facile synjournal of casein-based TiO2 nanocomposite for self-cleaning and high covering coatings: Insights from TiO2 dosage[J]. Progress in Organic Coatings, 2016,99:223.
17 Petrella A, Tamborra M, Curri M L , et al. Colloidal TiO2 nanocrystals/MEH-PPV nanocomposites: Photo(electro)chemical study[J]. Journal of Physical Chemistry B, 2005,109(4):1554.
18 Zhang J, Wang B J, Ju X , et al. New observations on the optical properties of PPV/TiO2 nanocomposites[J]. Polymer, 2001,42(8):3697.
19 Savenije T J, Warman J M, Goossens A . Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer[J]. Chemical Physics Letters, 1998,287(1):148.
20 Salafsky J S . Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites[J]. Physical Review B, 1999,59(16):293.
21 Chamis C C . Computerized multilevel analysis for multilayered fiber composites[J]. Computers & Structures, 1973,3(3):467.
22 Adams D F, Walrath D E. Iosipescu shear properties of SMC composite materials [C]∥Composite Materials: Testing and Design (6th Conference). ASTM International, 1982: 19.
23 Gent A N, Wang C . Fracture mechanics and cavitation in rubber-like solids[J]. Journal of Materials Science, 1991,26(12):3392.
24 Zhou L M, Mai Y W, Ye L . Analyses of fibre push-out test based on the fracture mechanics approach[J]. Composites Engineering, 1995,5(10-11):1199.
25 Scheutjens J M H M, Fleer G J . Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution[J]. Journal of Physical Chemistry, 1980,84(2):178.
26 Gennes P G D . Polymers at an interface: A simple view[J]. Advances in Colloid & Interface Science, 1987,27(3-4):189.
27 Guiselin O . First measurement of the discontinuity jump in a reflectivity curve near total reflection edge[J]. Europhysics Letters, 1992,17:57.
28 Semenov A N, Bonet-Avalas J, Johner A , et al. Adsorption of polymer solutions onto a flat surface[J]. Macromolecules, 1996,29(6):2179.
29 Theodorou D N . Lattice models for bulk polymers at interfaces[J]. Macromolecules, 1988,21(5):1391.
30 Tannenbaum R, Zubris M, David K , et al. FTIR characterization of the reactive interface of cobalt oxide nanoparticles embedded in polymeric matrices[J]. Journal of Physical Chemistry B, 2006,110(5):2227.
31 Lou Yuanhua, Liu Meihong, Wang Xinping . Study on the interfacial structure of inorganic particles polymer nanocomposites[J].Polymer Bulletin,2009(4):38(in Chinese).
31 娄渊华, 刘梅红, 王新平 . 纳米无机粒子/聚合物复合材料界面结构的研究[J].高分子通报,2009(4):38.
32 Doganay D, Coskun S, Kaynak C , et al. Electrical, mechanical and thermal properties of aligned silver nanowire/polylactide nanocomposite films[J]. Composites Part B Engineering, 2016,99:288.
33 Goumri M, Venturini J W, Bakour A , et al. Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA[J]. Applied Physics A, 2016,122(3):212.
34 She X, He C, Peng Z , et al. Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement[J]. Polymer, 2014,55(26):6803.
35 Shao L, Li J, Yu G , et al. PVA/polyethyleneimine-functionalized graphene composites with optimized properties[J]. Materials & Design, 2016,99:235.
36 Li Y, Yang T, Yu T , et al. Synergistic effect of hybrid carbon nanotube-graphene oxide as a nanofiller in enhancing the mechanical pro-perties of PVA composites[J]. Journal of Materials Chemistry, 2011,21(29):10844.
37 Hwang S H, Kang D, Ruoff R S , et al. Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing[J]. ACS Nano, 2014,8(7):6739.
38 Lin Y, Liu L, Xu G , et al. Interfacial interactions and segmental dynamics of poly(vinyl acetate)/silica nanocomposites[J]. Journal of Physical Chemistry C, 2015,119(23):12956.
39 Zaman I, Phan T T, Kuan H C , et al. Epoxy/graphene platelets nanocomposites with two levels of interface strength[J]. Polymer, 2011,52(7):1603.
40 Cheng Guojun, Song Ruijuan, Miao Jibin , et al. Characterization of interfacial structure of polymer nanocomposites[J]. Materials Review A:Review Papers, 2012,26(6):130(in Chinese).
40 程国君, 宋瑞娟, 苗继斌 , 等. 聚合物纳米复合材料界面结构的表征[J]. 材料导报:综述篇, 2012,26(6):130.
41 Hoshino J, Limpanart S, Khunthon S , et al. Adsorption of single-strand alkylammonium salts on bentonite, surface properties of the modified clay and polymer nanocomposites formation by a two-roll mill[J]. Materials Chemistry & Physics, 2010,123(2-3):706.
42 Wilson K S , Washburn A N R. Interphase effects in dental nanocomposites investigated by small-angle neutron scattering[J]. Journal of Biomedical Materials Research Part A, 2007,81(1):113.
43 Zhang Li, Shen Shijie . The research of fiber reinforced polymer interface[J]. Fiber Composites, 2011,28(4):30(in Chinese).
43 张莉, 申士杰 . 纤维增强树脂基复合材料界面结合机理研究现状[J]. 纤维复合材料, 2011,28(4):30.
44 Hong S, Leroueil P R, Janus E K , et al. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability[J]. Bioconjugate Che-mistry, 2006,17(3):728.
45 Leroueil P R, Berry S A, Duthie K , et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers[J]. Nano Letters, 2008,8(2):420.
46 Peetla C, Labhasetwar V . Effect of molecular structure of cationic surfactants on biophysical interactions of surfactant-modified nano-particles with a model membrane and cellular uptake[J]. Langmuir, 2009,25(4):2369.
47 Jing B, Hutin M, Connor E , et al. Polyoxometalate macroion induced phase and morphology instability of lipid membrane[J]. Che-mical Science, 2013,4(10):3818.
48 van Lehn R C, Ricci M, Silva P H , et al. Lipid tail protrusions media-te the insertion of nanoparticles into model cell membranes[J]. Nature Communications, 2014,5:4482.
49 Roiter Y, Ornatska M, Rammohan A R , et al. Interaction of nano-particles with lipid membrane[J]. Nano Letters, 2008,8(3):941.
50 Xiao X, Monta?o G A, Edwards T L , et al. Surface charge depen-dent nanoparticle disruption and deposition of lipid bilayer assemblies[J]. Langmuir, 2012,28(50):17396.
51 Dong H, Ye P, Zhong M , et al. Superhydrophilic surfaces via polymer-SiO2 nanocomposites[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010,26(19):15567.
52 Wu L, Jiang X . Recent developments in methodology employed to study the interactions between nanomaterials and model lipid membranes[J]. Analytical and Bioanalytical Chemistry, 2016,408(11):1.
53 Zhang L, Luo M, Sun S , et al. Effect of surface structure of nano-CaCO3 particles on mechanical and rheological properties of PVC composites[J]. Journal of Macromolecular Science Part B, 2010,49(5):970.
54 Ashida M, Noguchi T, Mashimo S . Dynamic moduli for short fiber-CR composites[J]. Journal of Applied Polymer Science, 1984,29(2):661.
55 Richard A, Vaia A, Giannelis E P . Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment[J]. Macromolecules, 1997,30(25):8000.
56 Pukánszky B, Fekete E . Adhesion and surface modification[J]. 1999,139:109.
57 Diao H, Si Y, Zhu A , et al. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility[J]. Materials Science & Engineering C, 2012,32(7):1796.
58 Jiang C, He H, Jiang H , et al. Nano-lignin filled natural rubber composites: Preparation and characterization[J]. Express Polymer Letters, 2013,7(5):480.
59 Zhang S, Guo M, Chen Z , et al. Grafting photosensitive polyurethane onto colloidal silica for use in UV-curing polyurethane nanocomposites[J]. Colloids & Surfaces A Physicochemical & Enginee-ring Aspects, 2014,443(4):525.
60 Hosseini S M, Torbati-Fard N, Kiyani H , et al. Comparative role of interface in reinforcing mechanisms of nano silica modified by silanes and liquid rubber in SBR composites[J]. Journal of Polymer Research, 2016,23(9):203.
61 Zhan Y, Fan Y, Pan Y , et al. Construction of advanced poly(arylene ether nitrile)/multi-walled carbon nanotubes nanocompo-sites by controlling the precise interface[J]. Journal of Materials Science, 2016,51(4):2090.
62 Yang J, Xu T, Lu A , et al. Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding[J]. Composites Science & Technology, 2009,69(2):147.
63 Wrobel D, Ionov M, Gardikis K , et al. Interactions of phosphorus-containing dendrimers with liposomes[J]. Biochimica Et Biophysica Acta, 2011,1811(3):221.
64 Gardikis K, Hatziantoniou S, Viras K , et al. A DSC and raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes[J]. International Journal of Pharmaceutics, 2006,318(1-2):118.
65 Yang Y, Yu W, Duan H , et al. Realization of reinforcing and toug-hening poly (phenylene sulfide) with rigid silica nanoparticles[J]. Journal of Polymer Research, 2016,23(9):188.
66 García-Chávez K I, Hernández-Escobar C A, Flores-Gallardo S G , et al. Morphology and thermal properties of clay/PMMA nanocomposites obtained by miniemulsion polymerization[J]. Micron, 2013,49(6):21.
67 Kim D, Lee Y, Seo J , et al. Preparation and properties of poly(urethane acrylate) (PUA) and tetrapod ZnO whisker (TZnO-W) composite films[J]. Polymer International, 2013,62(2):257.
68 Ciprari D, Karl Jacob A, Rina Tannenbaum . Characterization of polymer nanocomposite interphase and its impact on mechanical properties[J]. Macromolecules, 2006,39(19):6565.
69 Huang H, Chen L, Varshney V , et al. Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly (ether-ketone)[J]. Journal of Applied Physics, 2016,120(9):95102.
70 Ansari R, Rouhi S, Ajori S . On the interfacial properties of polymers/functionalized single-walled carbon nanotubes[J]. Brazilian Journal of Physics, 2016,46(3):361.
71 Rouhi S . Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs[J]. Fibers and Polymers, 2016,17(3):333.
72 Asadinezhad A, Kelich P . Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study[J]. Applied Surface Science, 2017,392:981.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[4] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[5] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[6] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[7] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[10] 王迎迎, 刘永欣, 沈倩, 付婵, 余昌敏. 磁分离技术和纳米金比色法用于嗜碱性粒细胞活化试验研究[J]. 材料导报, 2024, 38(9): 23030124-7.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 何彦, 王优强, 莫君, 赵涛, 朱玉玲, 李梦杰. Fe3O4@CuO磁流体的制备和边界润滑性能[J]. 材料导报, 2024, 38(8): 22060132-7.
[13] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[14] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[15] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[6] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[7] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[8] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[9] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
[10] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed