Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22060132-7    https://doi.org/10.11896/cldb.22060132
  无机非金属及其复合材料 |
Fe3O4@CuO磁流体的制备和边界润滑性能
何彦1, 王优强1,2,*, 莫君1, 赵涛1, 朱玉玲1, 李梦杰1
1 青岛理工大学机械与汽车工程学院,山东 青岛 266520
2 工业流体节能与污染控制教育部重点实验室,山东 青岛 266520
Preparation and Boundary Lubrication Performance of Fe3O4@CuO Magnetic Fluid
HE Yan1, WANG Youqiang1,2,*, MO Jun1, ZHAO Tao1, ZHU Yuling1, LI Mengjie1
1 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
2 Key Laboratory of Energy Conservation and Pollution Control of Industrial Fluids, Ministry of Education, Qingdao 266520, Shandong, China
下载:  全 文 ( PDF ) ( 28195KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用化学共沉淀法合成了纳米Fe3O4和纳米Fe3O4@CuO粒子。采用场发射透射电镜(FETEM)、X射线衍射仪(XRD)、振动样品磁强计(VSM)和傅里叶变换红外光谱仪(FTIR)对纳米粒子进行表征。采用表面活性剂法制备了不同粒子含量的PAO3磁流体。利用磁流体对外加磁场的响应特性和紫外分光光度计对磁流体分散性进行了表征。采用摩擦副为12CrNi4A和Si3N4的UMT-3往复摩擦磨损试验机对磁流体的摩擦学性能进行了评估。摩擦实验结果表明,含纳米Fe3O4粒子的PAO3基磁流体的润滑效果比较差。而质量分数为1%的纳米PAO3基Fe3O4@CuO粒子磁流体润滑时的摩擦系数相比于PAO3油润滑降低了29.6%,磨痕宽度降低了49.6%。从磨痕表面分析来看,这得益于CuO的摩擦烧结作用,在摩擦表面形成了有效的摩擦膜并修复磨损表面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何彦
王优强
莫君
赵涛
朱玉玲
李梦杰
关键词:  航空润滑油  纳米粒子  磁流体  减摩抗磨    
Abstract: Nano Fe3O4 particles and nano Fe3O4@CuO particles were synthesized by chemical coprecipitation. The nanoparticles were characterized by field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and fourier transform infrared spectrometer (FTIR). Polyalphaolefin (PAO) 3 magnetic fluids with different particle contents were prepared by surfactant method. The magnetic fluid was characterized by some changes of magnetic field and ultraviolet spectrophotometer. The friction and wear tester is UMT-3. The friction pairs are 12CrNi4A and Si3N4. The experimental results show that the addition of nano Fe3O4 increases the friction and wear. Compared with PAO3 oil, the friction coefficient of PAO3 based magnetic fluid lubricated with nano Fe3O4 and CuO composite nanoparticles is reduced by 29.6% and the wear scar width is reduced by 49.6%. From the analysis of wear mark surface, this is due to the friction sintering effect of CuO, and an effective friction film is formed on the friction surface to repair the wear surface.
Key words:  aviation lubrication    nanoparticle    magnetic fluid    antifriction and antiwear
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(51575289);山东省自然科学基金(ZR2021ME063)
通讯作者:  *王优强,青岛理工大学机械与汽车工程学院教授、博士研究生导师。1992年7月青岛理工大学冶金机械专业本科毕业,1995年3月东北大学机械学专业硕士毕业,1999年6月北京石油大学机械工程专业博士毕业。目前主要从事摩擦学与表界面工程及铝镁金属材料处理与加工。在Tribology International、Lubrication Science、STLE Tribology Transactions、Industrial Lubrication and Tribology、《机械工程学报》等国内外重要学术期刊上发表学术论文200余篇,其中SCI收录30余篇,EI收录30余篇,中文核心期刊收录100余篇。wyq1970301@126.com   
作者简介:  何彦,2020年7月西华大学交通运输专业本科毕业,2020年9月于青岛理工大学攻读硕士学位。在王优强教授的指导下进行研究,目前主要研究领域为摩擦学与表界面工程。
引用本文:    
何彦, 王优强, 莫君, 赵涛, 朱玉玲, 李梦杰. Fe3O4@CuO磁流体的制备和边界润滑性能[J]. 材料导报, 2024, 38(8): 22060132-7.
HE Yan, WANG Youqiang, MO Jun, ZHAO Tao, ZHU Yuling, LI Mengjie. Preparation and Boundary Lubrication Performance of Fe3O4@CuO Magnetic Fluid. Materials Reports, 2024, 38(8): 22060132-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060132  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22060132
1 Yao T, Zhang N, Hu J, et al. International Journal of Chemical Engineering, 2020, 2020, 1.
2 Wu N, Fei Y W, Zhang H, et al. Petroleum Processing and Petrochemicals, 2017, 48(3), 90(in Chinese).
吴楠, 费逸伟, 张昊, 等. 石油炼制与化工, 2017, 48(3), 90.
3 Liu W. Fine and Specialty Chemicals, 2018, 26(2), 18(in Chinese).
刘伟. 精细与专用化学品, 2018, 26(2), 18.
4 Li B, Xie F. Synthetic Lubricants, 2014, 41(1), 24(in Chinese).
李斌, 谢凤. 合成润滑材料, 2014, 41(1), 24.
5 Singh A P, Tripathi A, Shukla M N, et al. IOP Conference Series: Materials Science and Engineering, 2021, 1136(1), 012029.
6 Tong Q Z, Lyu X C, Liu X F, et al. Journal of Hebei Normal University:Natural Science, 2022, 46(6), 614(in Chinese).
佟千姿, 吕晓成, 刘喜富, 等. 河北师范大学学报(自然科学版), 2022, 46(6), 614.
7 Qiu P, Zhao T, Zhu X H, et al. Chinese Chemical Letters, 2021, 32(4), 1456.
8 Xiang H, Ren G, Zhong Y, et al. Nanomaterials, 2021, 11(2), 330.
9 Li Z, Yao J, Li D. Journal of Magnetism and Magnetic Materials, 2017, 424, 33.
10 Arias F J. Chinese Journal of Aeronautics, 2021, 34(5), 115.
11 Brojabasi S, Muthukumaran T, Laskar J M, et al. Optics Communications, 2015, 336, 278.
12 Feng S C, Liu S J, Liu T G, et al. Lubrication Engineering, 2004(3), 127(in Chinese).
封士彩, 刘书进, 刘同冈, 等. 润滑与密封, 2004(3), 127.
13 Yu X, Ding S, Yang R, et al. Ceramics International, 2021, 47(5), 5909.
14 Chen F, Zhang C, Yang X. International Journal of Applied Electromagnetics and Mechanics, 2021, 66(3), 1.
15 Shahrivar K, Ortiz A L, De Vicente J. Tribology International, 2014, 78, 125.
16 Wei H, Cong S, Liao S, et al. Tribology Letters, 2011, 41(1), 145.
17 Uhlmann E, Spur G, Bayat N, et al. Journal of Magnetism & Magnetic Materials, 2002, 252, 336.
18 Zhu M Y, Chen Q, Tong W J, et al. Progress in Chemistry, 2017, 29(11), 1366(in Chinese).
朱脉勇, 陈齐, 童文杰, 等. 化学进展, 2017, 29(11), 1366.
19 Wang L, Bao J, Wang L, et al. Chemistry-A European Journal, 2010, 12(24), 6341.
20 Jin J Z, Liu L H, Guo Y, et al. Science & Technology in Chemical Industry, 2010, 18(2), 74(in Chinese).
金晶哲, 刘立红, 郭阳, 等. 化工科技, 2010, 18(2), 74.
21 Brewe D E, Hamrock B J. Journal of Lubrication Technology, 1977, 99(4), 485.
22 Spikes H A. Lubrication Science, 2010, 9(3), 221.
23 Wang W Z, Huang P. Tribology, 2004, 24(3), 254(in Chinese).
王慰祖, 黄平. 摩擦学学报, 2004, 24(3), 254.
24 Bu-He Butter. Structure, morphology controlling and surface functiona-lization of spinel ferrite. Ph. D. Thesis, Heilongjiang University, China, 2013(in Chinese).
布和巴特尔. 尖晶石型铁氧体的结构形貌调控与表面功能化. 博士学位论文, 黑龙江大学, 2013.
25 Agnihotri P, Lad V N. Chemical Papers, 2020, 74, 3089.
26 Xu Y, Jian G, Peng Y, et al. Tribology International, 2018, 121, 241.
27 Zhang Q, Wu B, Song R, et al. Tribology International, 2019, 141, 105952.
28 Zhao J, Chen G, He Y, et al. RSC Advances, 2019, 9, 6583.
29 Peña-Parás L,Taha-Tijerina J, Garza L, et al. Wear, 2015, 332-333, 1256.
30 El-Saoudy S, Akl S Y. Lubricants, 2021, 9(2), 16.
[1] 王迎迎, 刘永欣, 沈倩, 付婵, 余昌敏. 磁分离技术和纳米金比色法用于嗜碱性粒细胞活化试验研究[J]. 材料导报, 2024, 38(9): 23030124-7.
[2] 胡思, 李梦瑶, 徐飞红, 张敏, 吴琼, 张咚咚. 刺激响应型聚集在纳米粒子中的应用[J]. 材料导报, 2023, 37(S1): 23040323-8.
[3] 唐昭敏, 江舒婷, 王郁东, 唐婉兰, 舒娟, 张骥阳, 何浩洋, 陈孔军. 负载过氧化铜的介孔二氧化硅纳米粒子协同化学动力学疗法和化疗联合治疗肿瘤[J]. 材料导报, 2023, 37(21): 22050131-5.
[4] 蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 22040257-8.
[5] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[6] 秦肖雲, 邵文龙, 田宽, 姜利英, 罗聃. 纳米粒子自组装超结构的制备及基于构效关系的性能[J]. 材料导报, 2023, 37(17): 21120161-12.
[7] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[8] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[9] 万中伊欣, 刘东青, 余金山. 日间辐射制冷材料研究进展[J]. 材料导报, 2022, 36(3): 20100091-9.
[10] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[11] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[12] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[13] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[14] 廖培义, 陈延明, 王立岩, 高洁. 醇-水体系无表面活性剂纳米ZnO的制备及表征[J]. 材料导报, 2021, 35(Z1): 108-111.
[15] 王永欣, 胡艺纹, 赵海超, 李金龙, 王春婷, 毛金明, 王立平, 薛群基. 石墨烯基水润滑添加剂研究进展[J]. 材料导报, 2021, 35(19): 19055-19061.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed