Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 23080058-8    https://doi.org/10.11896/cldb.23080058
  无机非金属及其复合材料 |
单晶型高镍LiNi0.83Co0.11Mn0.06O2正极材料的制备及电化学性能
黄宇轩1,2,3,4, 王英2,3,4, 唐仁衡2,3,4, 肖方明2,3,4, 曾黎明2,3,4,*, 黄惠1,*
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 广东省科学院资源利用与稀土开发研究所,广州 510650
3 稀有金属分离与综合利用国家重点实验室,广州 510650
4 广东省稀土开发及应用研究重点实验室,广州 510650
Preparation and Electrochemical Performance of Single-crystal High-nickel Cathode Materials LiNi0.83Co0.11Mn0.06O2
HUANG Yuxuan1,2,3,4, WANG Ying2,3,4, TANG Renheng2,3,4, XIAO Fangming2,3,4, ZENG Liming2,3,4,*, HUANG Hui1,*
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
3 Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangzhou 510650, China
4 Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 43232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单晶高镍三元正极材料因容量高、循环性能优异等优点,成为最具发展潜力的正极材料之一。采用高温固相法合成单晶高镍LiNi0.83Co0.11Mn0.06O2正极材料,探究了保温时间对材料结构和电化学性能的影响规律。结果表明,经500 ℃预烧4 h及850 ℃保温23 h获得的正极材料,在0.2C倍率下充放电的首次放电容量为203.4 mAh·g-1,首次充放电效率为83.9%,在1C倍率下充放电循环100圈后容量保持率达到89.5%。该研究结果可为高性能单晶高镍三元正极材料的研发提供一定的技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄宇轩
王英
唐仁衡
肖方明
曾黎明
黄惠
关键词:  单晶  高镍三元正极材料  电化学性能  烧结条件    
Abstract: Single-crystal high-nickel ternary cathode materials have become one of the potential cathode materials due to their high capacity, excellent cycling performance and other advantages. In this work, single-crystal high-nickel LiNi0.83Co0.11Mn0.06O2 cathode materials were synthesized by high-temperature solid-phase method, and the effects of different holding times on the structure and electrochemical performance of the materials were investigated. The results showed that after pre-sintered at 500 ℃ for 4 h, the cathode material continuously sintered at 850 ℃ for 23 h, afforded a first discharge capacity of 203.4 mAh·g-1 at 0.2C, a first Coulomb efficiency of 83.9%, and a capacity retention rate of 89.5% after 100 cycles at 1C charging and discharging. This study offers a feasible strategy for the development of single-crystal high-nickel ternary cat-hode materials with high cycling stability.
Key words:  single crystal    high-nickel ternary cathode material    electrochemical performance    sintering condition
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TM912  
基金资助: 广州市科技项目(202103040001);广东省科学院科技项目 (2022GDASZH-2022010104;2023GDASZH-2023010104)
通讯作者:  *曾黎明,博士,广东省科学院资源利用与稀土开发研究所副研究员。目前主要从事电化学能源催化转化与存储等方面的研究。lmz2012chem@163.com;黄惠,教授,博士研究生导师。主要从事导电高分子新型节能电极材料、储能材料、特种功能粉体材料、冶金电化学及湿法冶金新材料等应用基础研究及科技成果转化应用工作。huihuanghan@kust.edu.cn   
作者简介:  黄宇轩,工学硕士,目前主要研究方向为锂离子电池三元正极材料的制备及改性。
引用本文:    
黄宇轩, 王英, 唐仁衡, 肖方明, 曾黎明, 黄惠. 单晶型高镍LiNi0.83Co0.11Mn0.06O2正极材料的制备及电化学性能[J]. 材料导报, 2025, 39(24): 23080058-8.
HUANG Yuxuan, WANG Ying, TANG Renheng, XIAO Fangming, ZENG Liming, HUANG Hui. Preparation and Electrochemical Performance of Single-crystal High-nickel Cathode Materials LiNi0.83Co0.11Mn0.06O2. Materials Reports, 2025, 39(24): 23080058-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080058  或          https://www.mater-rep.com/CN/Y2025/V39/I24/23080058
1 Voronina N, Sun Y K, Myung S T. ACS Energy Letters, 2020, 5(6), 1814.
2 Kim J, Lee H, Cha H, et al. Advanced Energy Materials, 2018, 8(6), 1702028.
3 Park K J, Jung H G, Kuo L Y, et al. Advanced Energy Materials, 2018, 8(25), 1801202.
4 Zhang H, He X, Chen Z, et al. Advanced Energy Materials, 2022, 12(45), 2202022.
5 Ryu H H, Namkoong B, Kim J H, et al. ACS Energy Letters, 2021, 6(8), 2726.
6 Noh H J, Youn S, Yoon C S, et al. Journal of Power Sources, 2013, 233, 121.
7 Ryu H H, Park K J, Yoon C S, et al. Chemistry of Materials, 2018, 30(3), 1155.
8 Li H, Li J, Zaker N, et al. Journal of the Electrochemical Society, 2019, 166(10), A1956.
9 Liu Y, Harlow J, Dahn J. Journal of the Electrochemical Society, 2020, 167(2), 020512.
10 Qian G, Zhang Y, Li L, et al. Energy Storage Materials, 2020, 27, 140.
11 Ni L, Guo R, Deng W, et al. Chemical Engineering Journal, 2022, 431, 133731.
12 Du K, Zhu F, Sun Q, et al. Journal of Alloys and Compounds, 2021, 873, 159839.
13 Zhu X P. Preparation and modification of single crystal ternary cathode materials for lithium-ion batteries. Ph. D. Thesis, University of Science and Technology Beijing, China, 2023(in Chinese).
朱晓沛. 锂离子电池单晶三元正极材料制备及改性研究. 博士毕业论文, 北京科技大学, 2022.
14 Zhu J, Vo T, Li D, et al. Crystal Growth & Design, 2012, 12(3), 1118.
15 Li L, Zhang Z, Fu S, et al. Applied Surface Science, 2019, 476, 1061.
16 Zhang B, Cheng L, Deng P, et al. Journal of Alloys and Compounds, 2021, 872, 159619.
17 Zhang M, Zhao H, Tan M, et al. Journal of Alloys and Compounds, 2019, 774, 82.
18 Yi T F, Qu J P, Lai X, et al. Materials Today Chemistry, 2021, 19, 100407.
19 Yi T F, Qiu L Y, Mei J, et al. Science Bulletin, 2020, 65(7), 546.
20 Galakhov V R, Kurmaev E Z, Uhlenbrock S, et al. Solid State Communications, 1996, 99(4), 221.
21 Kosova N V, Devyatkina E T, Kaichev V V. Journal of Power Sources, 2007, 174(2), 965.
22 Zhu J, Zheng J, Cao G, et al. Journal of Power Sources, 2020, 464, 228207.
23 Wang W, Wu L, Li Z, et al. ChemElectroChem, 2020, 7(17), 3646.
24 Jin F, Xue X, Zhao Y, et al. Journal of Colloid and Interface Science, 2022, 619, 65.
25 Kim U, Ryu H, Kim J, et al. Advanced Energy Materials, 2019, 9(15), 1803902.
26 Yoon C S, Ryu H H, Park G T, et al. Journal of Materials Chemistry A, 2018, 6(9), 4126.
27 Yoon C S, Jun D W, Myung S T, et al. ACS Energy Letters, 2017, 2(5), 1150.
28 Schipper F, Bouzaglo H, Dixit M, et al. Advanced Energy Materials, 2018, 8(4), 1701682.
29 Zhu J, Chen G. Journal of Materials Chemistry A, 2019, 7(10), 5463.
30 Huang Y, Xia J, Hu G, et al. Electrochimica Acta, 2020, 332, 135505.
31 Li Y, Chen J, Cai P, et al. Journal of Materials Chemistry A, 2018, 6(12), 4948.
32 Hu D, Du F, Cao H, et al. Journal of Electroanalytical Chemistry, 2021, 880, 114910.
33 Trevisanello E, Ruess R, Conforto G, et al. Advanced Energy Materials, 2021, 11(18), 2003400.
[1] 盛红飞, 邓黎鹏, 易润华, 李海涛, 程东海, 黄斌. DD5合金钎焊前电阻焊定位界面成形及性能分析研究[J]. 材料导报, 2025, 39(9): 24030006-5.
[2] 李涛, 吕国强, 李遇贤, 钱益超, 张杰. 光伏单晶硅片冲洗过程中应力分布的研究[J]. 材料导报, 2025, 39(7): 24010045-7.
[3] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[4] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[5] 苏航, 薛静炜, 杨元博, 李田田, 李立伟, 蒋龙. 高性能钙钛矿单晶太阳电池研究进展[J]. 材料导报, 2025, 39(23): 24120201-8.
[6] 王蕾, 刘少冕, 范凤兰, 韩伟. 大幅提高速生木基钠离子电池负极首次库伦效率方法的研究[J]. 材料导报, 2025, 39(23): 24110189-6.
[7] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[8] 朱世同, 吴隽, 吴浪, 邹彩旗, 刘蕾, 邹茜璐, 王欣然, 李涛涛. 面向集成应用的二维半导体生长进展及展望[J]. 材料导报, 2025, 39(18): 24080060-9.
[9] 曲九灏, 雷宽, 马棋盛, 张艺馨, 刘贵群, 张小丽. DD90镍基单晶高温合金的电化学溶解行为研究[J]. 材料导报, 2025, 39(17): 24060120-7.
[10] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[11] 肖浩, 温婧, 李菲菲, 姜涛. 焦钒酸锰酸浸液水热制备MnV2O6纳米带及其储锂性能研究[J]. 材料导报, 2025, 39(11): 24030029-6.
[12] 陈逸翀, 程跃, 王亚飞, 邵冲云, 于春雷, 胡丽丽. 单晶光纤的包层结构制备研究进展[J]. 材料导报, 2025, 39(11): 24060196-11.
[13] 刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
[14] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[15] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed