Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120201-8    https://doi.org/10.11896/cldb.24120201
  无机非金属及其复合材料 |
高性能钙钛矿单晶太阳电池研究进展
苏航*, 薛静炜, 杨元博, 李田田, 李立伟, 蒋龙*
中国石油集团工程材料研究院有限公司,西安 710000
Research Progress of High-performance Perovskite Single-crystal Solar Cells
SU Hang*, XUE Jingwei, YANG Yuanbo, LI Tiantian, LI Liwei, JIANG Long*
CNPC Tubular Goods Research Institute, Xi’an 710000, China
下载:  全 文 ( PDF ) ( 30927KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 得益于有机无机杂化钙钛矿材料优异的光电特性,在过去十几年中,钙钛矿太阳电池的认证效率已提高到26.7%,是当今光伏领域发展最为迅速的技术。与广泛研究的多晶薄膜相比,无晶界的单晶钙钛矿具有更低的缺陷密度、更优异的光电特性和更好的稳定性,在制备更高效率、更长寿命的光伏器件方面展现出巨大潜力。此外,单晶钙钛矿太阳电池还是深入研究钙钛矿材料表面和晶界相关机理的绝佳模型。遗憾的是,受限于三维单晶薄片生长的极高难度,目前全球仅有少数研究组进行了单晶钙钛矿太阳电池的开发,导致这一领域的发展速度远落后于多晶薄膜电池。鉴于此,本综述首先介绍了钙钛矿单晶薄片生长的方法,并总结了近期钙钛矿单晶电池的最新研究进展,最后详细讨论了单晶钙钛矿太阳电池面临的挑战和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏航
薛静炜
杨元博
李田田
李立伟
蒋龙
关键词:  钙钛矿  单晶薄片  太阳电池  高效率    
Abstract: In the past decade or so, thanks to the excellent photovoltaic properties of organic-inorganic hybrid perovskite materials, the certified efficiency of perovskite solar cells has increased to 26.7%, which is the most rapidly developing technology in photovoltaics. With a less trap-state density, superior photovoltaic properties and better stability than the widely studied polycrystalline thin films, single-crystal perovskite without grain boundaries shows a greater potential for the preparation of higher efficiency and longer lifetime photovoltaic devices. In addition, single-crystal perovskite solar cells are excellent models for further mechanism studies related to the surface and grain boundaries of perovskite materials. Unfortunately, limited by the high difficulty of growing 3D single-crystal thin films, only a few groups have carried out the development of single-crystal perovskite solar cells, resulting in the development of this field lagging far behind that of polycrystalline film counterparts. Therefore, this review introduces the methods of single-crystal perovskite thin films growth and summarizes the recent research progress in perovskite single-crystal solar cells. Finally, the challenges and development prospects of single-crystal perovskite solar cells are discussed in detail.
Key words:  perovskite    single-crystal thin film    solar cell    high efficiency
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TM914.4  
基金资助: 国家重点研发计划(2022YFB4200305);中国石油集团关键核心技术攻关项目(2024ZG50)
通讯作者:  *苏航,博士。主要研究领域包括高效钙钛矿单结及叠层太阳电池开发、钙钛矿单晶生长及器件应用。suhang011@cnpc.com.cn;蒋龙,博士,正高级工程师。从事余热利用热电转化、光伏和电化学储能等新能源材料与器件研发方面的研究。jianglong003@cnpc.com.cn   
引用本文:    
苏航, 薛静炜, 杨元博, 李田田, 李立伟, 蒋龙. 高性能钙钛矿单晶太阳电池研究进展[J]. 材料导报, 2025, 39(23): 24120201-8.
SU Hang, XUE Jingwei, YANG Yuanbo, LI Tiantian, LI Liwei, JIANG Long. Research Progress of High-performance Perovskite Single-crystal Solar Cells. Materials Reports, 2025, 39(23): 24120201-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120201  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120201
1 Yang D, Zhou X, Yang R, et al. Energy & Environmental Science, 2016, 9(10), 3071.
2 Zhao K, Liu Q, Yao L, et al. Nature, 2024, 632(8024), 301.
3 Pellet N, Gao P, Gregori G, et al. Angewandte Chemie International Edition, 2014, 53(12), 3151.
4 Grätzel M. Nature Materials, 2014, 13(9), 838.
5 Best research-cell efficiencies chart (NREL). https:∥www. nrel. gov/pv/cell-efficiency. html.
6 Zhou J, Tan L, Liu Y, et al. Joule, 2024, 8(6), 1691.
7 Chen H, Liu C, Xu J, et al. Science, 2024, 384, 189.
8 Li B, Gao D, Sheppard S A, et al. Journal of the American Chemical Society, 2024, 146(19), 13391.
9 Gao Y, Song Z, Fu Q, et al. Advanced Materials, 2024, 36, 2405921.
10 Liu S, Li J, Xiao W, et al. Nature, 2024, 632(8025), 536.
11 Liu C, Yang Y, Chen H, et al. Nature, 2024, 633(8029), 359.
12 Hu M, Zhu Y, Zhou Z, et al. Advanced Energy Materials, 2023, 13, 2301888.
13 Liu C, Yuan J, Masse R, et al. Advanced Materials, 2021, 33(22), 1905245.
14 Ran C, Xu J, Gao W, et al. Chemical Society Reviews, 2018, 47(12), 4581.
15 Niu T, Lu J, Munir R, et al. Advanced Materials, 2018, 30(16), 1706576.
16 Xiang W, Zhang J, Liu S, et al. Joule, 2022, 6(2), 315.
17 Cai Y, Cui J, Chen M, et al. Advanced Functional Materials, 2021, 31, 2005776.
18 Jiang Q, Zhao Y, Zhang X, et al. Nature Photonics, 2019, 13(7), 460.
19 Liu G, Zheng H, Ye J, et al. ACS Energy Letters, 2021, 6(12), 4395.
20 Su H, Zhang L, Liu Y, et al. Nano Energy, 2022, 95, 106965.
21 Kerner R A, Rand B P. The Journal of Physical Chemistry Letters, 2017, 8(10), 2298.
22 Su H, Xu Z, He X, et al. Advanced Materials, 2024, 36, 2306724.
23 Cao Y, Feng J, Wang M, et al. Advanced Energy Materials, 2023, 13, 2301203.
24 Zhumekenov A A, Saidaminov M I, Haque M A, et al. ACS Energy Letters, 2016, 1(1), 32.
25 Lian Z, Yan Q, Gao T, et al. Journal of the American Chemical Society, 2016, 138(30), 9409.
26 Shao Y, Fang Y, Li T, et al. Energy & Environmental Science, 2016, 9(5), 1752.
27 Liu Y, Yang Z, Cui D, et al. Advanced Materials, 2015, 27(35), 5176.
28 Chen Z, Li C, Zhumekenov A A, et al. Advanced Optical Materials, 2019, 7, 1900506.
29 Dong Q, Fang Y, Shao Y, et al. Science, 2015, 347, 967.
30 Cheng X, Yang S, Cao B, et al. Advanced Functional Materials, 2020, 30, 1905021.
31 Wang Y, Sun X, Chen Z, et al. Advanced Materials, 2017, 29, 1702643.
32 Chen J, Morrow D J, Fu Y, et al. Journal of the American Chemical Society, 2017, 139(38), 13525.
33 Detchprohm T, Hiramatsu K, Amano H, et al. Applied Physics Letters, 1992, 61(22), 2688.
34 Zhumekenov A A, Burlakov V M, Saidaminov M I, et al. ACS Energy Letters, 2017, 2(8), 1782.
35 Liu Y, Dong Q, Fang Y, et al. Advanced Functional Materials, 2019, 29, 1807707.
36 Liu Y, Sun J, Yang Z, et al. Advanced Optical Materials, 2016, 4(11), 1829.
37 Liu Y, Ren X, Zhang J, et al. Science China Chemistry, 2017, 60(10), 1367.
38 Lv Q, Lian Z, He W, et al. Journal of Materials Chemistry C, 2018, 6(16), 4464.
39 Liu Y, Zhang Y, Yang Z, et al. Advanced Materials, 2016, 28(41), 9204.
40 Rao H S, Li W G, Chen B X, et al. Advanced Materials, 2017, 29, 1602639.
41 Chen Y X, Ge Q Q, Shi Y, et al. Journal of the American Chemical Society, 2016, 138(50), 16196.
42 Huang Y, Zhang Y, Sun J, et al. Advanced Materials Interfaces, 2018, 5, 1800224.
43 Li W G, Wang X D, Liao J F, et al. Journal of Materials Chemistry C, 2019, 7(19), 5670.
44 Zhao J, Kong G, Chen S, et al. Science Bulletin, 2017, 62(17), 1173.
45 Chen Z, Dong Q, Liu Y, et al. Nature Communications, 2017, 8(1), 1890.
46 Peng W, Wang L, Murali B, et al. Advanced Materials, 2016, 28(17), 3383.
47 Rao H S, Chen B X, Wang X D, et al. Chemical Communications, 2017, 53(37), 5163.
48 Chen Z, Turedi B, Alsalloum A Y, et al. ACS Energy Letters, 2019, 4(6), 1258.
49 Alsalloum A Y, Turedi B, Zheng X, et al. ACS Energy Letters, 2020, 5(2), 657.
50 Li N, Feng A, Guo X, et al. Advanced Energy Materials, 2021, 12, 2103241.
51 Guo X, Li N, Xu Y, et al. Advanced Functional Materials, 2023, 33, 2213995.
52 Alsalloum A Y, Turedi B, Almasabi K, et al. Energy & Environmental Science, 2021, 14(4), 2263.
53 Al-Ashouri A, Magomedov A, Roß M, et al. Energy & Environmental Science, 2019, 12(11), 3356.
54 Wang X, Li J, Guo R, et al. Nature Photonics, 2024, 18(12), 1269.
55 Almasabi K, Zheng X, Turedi B, et al. ACS Energy Letters, 2023, 8(2), 950.
56 Yang L, Zhou H, Duan Y, et al. Advanced Materials, 2023, 35(16), 2211545.
57 Yang L, Feng J, Liu Z, et al. Advanced Materials, 2022, 34(24), 2201681.
58 Lintangpradipto M N, Zhu H, Shao B, et al. ACS Energy Letters, 2023, 8(11), 4915.
59 Liu N, Li N, Jiang C, et al. Advanced Functional Materials, 2024, 34, 2410631.
60 Liu N, Li N, Jiang C, et al. Angewandte Chemie International Edition, 2024, 63(9), 202314089.
61 Jiang C, Li N, Niu Y, et al. Angewandte Chemie International Edition, 2024, 63(52), 202412485.
62 Mohd Y A R, Vasilopoulou M, Georgiadou D G, et al. Energy & Environmental Science, 2021, 14(5), 2906.
63 Wu Z, Bi E, Ono L K, et al. Nano Energy, 2023, 115, 108731.
64 He X, Chen H, Yang J, et al. Angewandte Chemie International Edition, 2024, 63(52), 202412601.
65 Nizamani N, Wang K L, Jin R J, et al. Chemical Engineering Journal, 2024, 498, 155183.
66 Wang Y, Chen J, Zhang Y, et al. Advanced Materials, 2024, 36, 2412021.
[1] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[2] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[3] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[4] 王芹芹, 黄玮, 顾斯雯, 丁建宁. 钙钛矿基叠层太阳电池的最新进展及发展趋势[J]. 材料导报, 2025, 39(20): 24080136-11.
[5] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[6] 邓雨凤, 刘鹏, 刘子玉, 杨现锋. 纳米颗粒溶出钙钛矿电催化剂的研究进展[J]. 材料导报, 2025, 39(19): 24090017-7.
[7] 党婵娟, 沈霞, 张保龙, 郭鹏飞. 无机卤化物钙钛矿CsPbCl3纳米线的可控制备与光学性质[J]. 材料导报, 2025, 39(11): 24040008-5.
[8] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[9] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[10] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[11] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[12] 彭林森, 李凝, 蒋武, 练彩霞. A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响[J]. 材料导报, 2024, 38(23): 23070161-5.
[13] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[14] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[15] 孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed