Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22050119-11    https://doi.org/10.11896/cldb.22050119
  无机非金属及其复合材料 |
基于断裂力学的沥青混凝土抗裂性能与研究方法进展
宋卫民, 吴昊*
中南大学土木工程学院,长沙 410075
Advances in Fracture Mechanics Studies on Fracture Resistance and Research Methods of Asphalt Concrete
SONG Weimin, WU Hao*
School of Civil Engineering, Central South University, Changsha 410075,China
下载:  全 文 ( PDF ) ( 4730KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对断裂力学在沥青混凝土的应用背景以及目前研究的不足,分别从沥青混凝土断裂力学基本理论和沥青断裂性能的研究进展以及沥青混凝土断裂测试方法三个方面总结了相关成果和进展。阐述了线弹性断裂力学、弹塑性断裂力学及疲劳断裂力学在沥青混凝土中的应用条件和评价参数;从材料组成、再生和温拌工艺、路面层间黏结以及细观模拟等方面总结了沥青混凝土抗裂性能的研究现状;列举了目前评价沥青混凝土断裂性能的试验方法;指出了目前研究的不足和以后研究的建议。研究结果表明:沥青混凝土的低温和中温断裂一般分别用线弹性断裂力学和弹塑性断裂力学理论来评价和分析,有必要将线弹性断裂力学和弹塑性断裂力学结合,从而提出一个统一的宽温度域的评价指标;目前针对单调荷载作用下沥青混凝土断裂性能的研究较多,针对循环荷载作用下沥青混凝土断裂行为的研究还较少,有必要通过疲劳试验明确沥青混凝土的裂纹扩展规律;沥青混凝土断裂的细观模拟可以从细观角度揭示裂纹发生和扩展的机理,但破坏模型的选取和细观参数的确定是影响模拟结果准确性的重要因素,需要进一步重视。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋卫民
吴昊
关键词:  沥青混凝土  断裂力学  线弹性  弹塑性  疲劳  测试方法  细观模拟    
Abstract: Based on the application background of fracture mechanics in asphalt concrete and the shortcomings of current research, the relevant achievements and research results are summarized from the basic theory of asphalt concrete fracture mechanics, the research progress of fracture performance and the fracture test method of asphalt concrete. The application conditions and evaluation parameters of linear elastic fracture mechanics, elastic-plastic fracture mechanics and fatigue fracture mechanics in asphalt concrete are expounded. The research status of asphalt concrete fracture resistance is summarized from the aspects of composition, recycling and warm mix technology, interlayer bonding and mesoscopic simulation. The current test methods for evaluating the fracture performance of asphalt concrete are highlighted. Insufficiency of current research and suggestions for future research are pointed out. The research results show that the low-temperature and medium-temperature fractures of asphalt concrete are generally evaluated and analyzed by linear elastic fracture mechanics and elastoplastic fracture mechanics, respectively, and the evaluation indexes of fracture performance at medium and low temperature are different. A unified evaluation index for a wide temperature range is recommended to be proposed. Currently, lots of studies are conducted on fracture performance under monotonic load, few studies on fracture behavior of asphalt concrete under cyclic load are performed. It is necessary to clarify the crack propagation law of asphalt concrete through fatigue test. The mesoscopic simulation of asphalt concrete fracture can reveal the mechanism of crack occurrence and propagation from a mesoscopic perspective, but the selection of the failure model and the determination of mesoscopic parameters are important factors that affect the accuracy of the simulation results, which need further attention.
Key words:  asphalt concrete    fracture mechanics    linear-elastic    elastic-plastic    fatigue    test method    mesoscopic simulation
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  U416  
  TB332  
基金资助: 国家自然科学基金(52008405;51778638)
通讯作者:  *吴昊,中南大学土木工程学院教授、博士研究生导师。2003年6月、2006年6月分别于长沙理工大学获得工学学士学位和硕士学位,2011年10月获美国田纳西大学工学博士学位。目前主要从事路面材料力学性能及耐久性能的研究工作。发表论文50余篇,包括Engineering Fracture Mecha-nics、Journal of Cleaner Production、Road Materials and Pavement Design、Journal of Materials in Civil Enginee-ring等。haoutk@csu.edu.cn   
作者简介:  宋卫民,2010年6月、2013年6月分别于中南大学获得工学学士学位和硕士学位;2017年7月获美国田纳西大学工学博士学位。现为中南大学土木工程学院副教授、硕士研究生导师。目前主要从事沥青混凝土路面材料断裂与损伤行为研究。
引用本文:    
宋卫民, 吴昊. 基于断裂力学的沥青混凝土抗裂性能与研究方法进展[J]. 材料导报, 2023, 37(16): 22050119-11.
SONG Weimin, WU Hao. Advances in Fracture Mechanics Studies on Fracture Resistance and Research Methods of Asphalt Concrete. Materials Reports, 2023, 37(16): 22050119-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050119  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22050119
1 Ministry of Transport. 2020 statistical bulletin of transportation industry development (in Chinese). 2021. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202105/t20210517_3593412.html.
交通运输部, 2020年交通运输行业发展统计公报, 2021. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202105/t20210517_3593412.html.
2 Song W, Xu Z, Wu H, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2386 (in Chinese).
宋卫民, 徐子浩, 吴昊, 等.中南大学学报(自然科学版), 2021, 52(7), 2386.
3 Qi L. Investigation of the low temperature performance of asphalt mixture using the indirect tensile test. Master's Thesis, Chang'an University, China, 2006 (in Chinese).
齐琳. 采用间接拉伸试验评价沥青混合料低温性能研究. 硕士学位论文, 长安大学,2006.
4 Tian X, Ying R, Zheng J. China Civil Engineering Journal, 2002, 35(3), 25 (in Chinese).
田小革, 应荣华, 郑健龙. 土木工程学报, 2002, 35(3), 25.
5 Ma K, Song W, Du Y, et al. Road maintenance and management technology, Central South University Press, China, 2021, pp. 51 (in Chinese).
马昆林, 宋卫民, 杜银飞, 等.道路养护维修与管理技术, 中南大学出版社, 2021, pp. 51.
6 Yang W, Tan H. Science Foundation in China, 1993(4), 249 (in Chinese).
杨卫, 谭鸿来. 中国科学基金, 1993(4), 249.
7 AASHTO TP 105-20. Standard method of test for determining the fracture energy of asphalt mixtures using the semi circular bend geometry (SCB), AASHTO, 2020.
8 Forman R, Kearney V, Engle R. Journal of Fluids Engineering, 1967, 459.
9 Wolf E. Engineering Fracture Mechanics, 1970, 2(1), 37.
10 Brose W, Dowling N. Elastic-plastic fracture, ASTM International, 1979, pp.720.
11 Gu F, Luo X, Zhang Y, et al. Construction and Building Materials, 2015, 101, 1059.
12 Banks-Sills L, Volpert Y. Engineering Fracture Mechanics, 1991, 40(2), 355.
13 Cheng L, Zhang L, Liu X, et al. Construction and Building Materials, 2022, 317, 126119.
14 Yuan F, Cheng L, Shao X, et al. Engineering Fracture Mechanics, 2020, 235, 107127.
15 Jiang J, Ni F. Journal of Southeast University (English Edition), 2017, 33(2), 216.
16 Romeo E, Birgisson B, Montepara A, et al. International Journal of Pavement Engineering, 2010, 11(5), 403.
17 Wang H, Zhang C, Yang L, et al. Construction and Building Materials, 2013, 47, 223.
18 Birgisson B, Montepara A, Romeo E, et al. Road Materials and Pavement Design, 2010, 11(sup1), 61.
19 Li X, Marasteanu M, Kvasnak A, et al. Journal of Materials in Civil Engineering, 2010, 22(2), 145.
20 Aliha M, Behbahani H, Fazaeli H, et al. Scientia Iranica, 2015, 22(1), 120.
21 Li X, Marasteanu M. Engineering Fracture Mechanics, 2010, 77(7), 1175.
22 Shafabakhsh G, Taghipoor M, Sadeghnejad M, et al. Construction and Building Materials, 2015, 90, 59.
23 Guo Q, Wang H, Gao Y, et al. Science Technology and Engineering, 2020, 20(13), 5377 (in Chinese).
郭庆林, 王红雨, 高颖, 等.科学技术与工程, 2020, 20(13), 5377.
24 Hong R, Wu J, Cai H. Construction and Building Materials, 2020, 238, 117678.
25 Ye Q, Wu S, Li N. International Journal of Fatigue, 2009, 31(10), 1598.
26 Chen Z, Leng Z, Xiao Y, et al. China Journal of Highway and Transport, 2021, 34(10), 190 (in Chinese).
陈宗武, 冷真, 肖月, 等.中国公路学报, 2021, 34(10),190.
27 Cheng M. Highway Engineering, 2016, 41(5), 46 (in Chinese).
程梅.公路工程, 2016, 41(5), 46.
28 Liu K. Preparation technology and electro-thermal characteristics of carbon fiber/graphene conductive asphalt concrete. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
刘凯. 碳纤维/石墨烯导电沥青混凝土的制备及电热特性研究.硕士学位论文, 哈尔滨工业大学,2018.
29 Ziari M, Hajikarimi P, Kazerooni A, et al. Construction and Building Materials, 2021, 310, 125240.
30 Motevalizadeh S, Sedghi R, Rooholamini H. Construction and Building Materials, 2020, 240, 117965.
31 Zhao S, Huang B, Shu X, et al. Transportation Research Record, 2014, 2445(1), 56.
32 Ning Z, Liu Y, Meng X, et al. Journal of Hydroelectric Engineering, 2021, 41(1), 74 (in Chinese).
宁致远, 刘云贺, 孟霄, 等.水力发电学报, 2021, 41(1), 74.
33 Taherkhani H, Tajdini M. Construction and Building Materials, 2019, 218, 308.
34 Ameri M, Nowbakht S, Molayem M, et al. Fatigue & Fracture of Engineering Materials & Science, 2016, 39(7), 896.
35 Pirmohammad S, Majd-Shokorlou Y, Amani B. Road Materials and Pavement Design, 2020, 21(8), 2321.
36 Mahani A, Bazoobandi P, Hosseinian S, et al. Construction and Building Materials, 2021, 285, 122876.
37 Li N, Molenaar A, Ven M, et al.In: 7th RILEM International Conference on Cracking in Pavements. Springer, Germany, 2012, pp. 827.
38 Li N, Molenaar A, Ven M, et al. In: Proceedings of the 3rd Workshop on 4PB. California, 2012, pp. 35.
39 Stewart C, Oputa C, Garcia E. Construction and Building Materials, 2018, 160, 487.
40 Eghbali M, Tafti M, Aliha M, et al. Engineering Fracture Mechanics, 2019, 216, 106496.
41 Shahryari N, Keymanesh M, Aliha M. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(2), 551.
42 Aliha M, Behbahani H, Fazaeli H, et al. Construction and Building Materials, 2014, 54, 623.
43 Pirmohammad S, Abdi M, Ayatollahi M. Theoretical and Applied Fracture Mechanics, 2021, 116, 103089.
44 Moon K, Falchetto A, Wang D, et al. Transportation Research Record, 2019, 2673(3), 472.
45 Song W, Xu Z, Xu F, et al. Engineering Fracture Mechanics, 2021, 253, 107892.
46 Zhou Z. Research on cracking behavior and fracture mechanism of plant produced reclaimed asphalt pavement mixtures. Ph.D. Thesis, Southeast University, China, 2020 (in Chinese).
周洲. 厂拌热再生沥青混合料抗裂性能和开裂机理研究. 博士学位论文, 东南大学,2020.
47 Jahanbakhsh H, Karimi M, Naseri H, et al. Journal of Cleaner Production, 2020, 244, 118837.
48 Yang J, Zhang W, Yao Y, et al. Journal of Highway and Transportation Research and Development, 2021, 38(10), 7 (in Chinese).
仰建岗, 张伟, 姚玉权, 等.公路交通科技, 2021, 38(10), 7.
49 Hou Y, Dong Y, Li Z, et al. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(8), 120 (in Chinese).
侯芸, 董元帅, 李志豪, 等.重庆交通大学学报(自然科学版), 2021, 40(8), 120.
50 Ai C, Yan W, Tao Y, et al. Transportation Science & Technology, 2020, 300(3), 117 (in Chinese).
艾长发, 颜薇, 陶雅乐, 等.交通科技, 2020, 300(3), 117.
51 He Y, Li W, Lei J, et al. Highway, 2020(9), 59 (in Chinese).
何永泰, 李炜, 雷俊安, 等. 公路, 2020(9), 59.
52 Yang E, Xu J, Tang Y, et al. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2), 604 (in Chinese).
阳恩慧, 徐加秋, 唐由之, 等. 吉林大学学报(工学版), 2021, 51(2), 604.
53 Yousefi A, Behnood A, Nowruzi A, et al. Construction and Building Materials, 2021, 268, 121200.
54 Song W, Xu F, Wu H, et al. Engineering Fracture Mechanics, 2022, 265, 108314.
55 Tang Z, Huang F, Peng H. Advances in Civil Engineering, 2021, 2021, 1.
56 Hakimzadeh S, Kebede N, Buttlar W, et al. Road Materials and Pavement Design, 2012, 13(sup1), 76.
57 Zhang K. Research on multi-scale parameter database and cross-scale correlation method of asphalt mixture. Ph.D. Thesis, Harbin Institute of Technology, China, 2021 (in Chinese).
张凯. 沥青混合料多尺度参数数据库及跨尺度关联方法研究. 博士学位论文, 哈尔滨工业大学,2021.
58 Zhu H, Tan Q, Fan S, et al. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(10), 97 (in Chinese).
朱洪洲, 谭祺琦, 范世平,等. 重庆交通大学学报(自然科学版), 2021, 40(10), 97.
59 Dong G. Meso-model and pure torsion simulation of asphalt mixture based on random coarse aggregate. Master's Thesis, Dalian University of Technology, China, 2021 (in Chinese).
董国发. 基于随机粗集料的沥青混合料细观模型及纯扭模拟分析. 硕士学位论文, 大连理工大学,2021.
60 Yin A, Yang X, Gao H, et al. Engineering Fracture Mechanics, 2012, 92, 40.
61 Song W, Deng Z, Wu H, et al. Construction and Building Materials, 2022, 340, 27462.
62 Al-Qudsi A, Falchetto A, Wang D, et al. Cold Regions Science and Technology, 2020, 169, 102916.
63 Yin A, Yang X, Yang Z. Procedia Iutam, 2013, 6, 114.
64 Wu G. Visco-elastic fracture mechanics in road works. Master's Thesis, Lanzhou University of Technology, China, 2012 (in Chinese).
吴贵贤. 粘弹性断裂力学在沥青路面中的应用. 硕士学位论文, 兰州理工大学,2012.
65 Fu J, Li J, Zhang X, et al. Road Materials and Pavement Design, 2018, 19(8), 1904.
66 Liu J. Fracture properties research on fiber reinforced emulsified asphalt-cement concrete. Ph.D. Thesis, Wuhan University of Technology, China, 2018 (in Chinese).
刘洁. 纤维增强乳化沥青-水泥混凝土的断裂性能研究. 博士学位论文, 武汉理工大学,2018.
67 Lancaster I, Khalid H, Kougioumtzoglou I. Construction and Building Materials, 2013, 48, 270.
68 Ban H, Im S, Kim Y. Construction and Building Materials, 2015, 101,721.
69 Xia Y, Zou F. Highway, 2021, 66(3), 299 (in Chinese).
夏怡, 邹飞.公路, 2021, 66(3), 299.
70 Du J, Ren D, Ai C, et al. Journal of Building Materials, 2022, 25(3), 300 (in Chinese).
杜健欢, 任东亚, 艾长发, 等.建筑材料学报, 2022, 25(3), 300.
71 Xue B, Pei J, Zhou B, et al. Construction and Building Materials, 2020, 236, 117580.
72 Ren J, Sun L. Engineering Fracture Mechanics, 2017, 170, 23.
73 Miner M. Journal of Applied Mechanics, 1945, 12(3), 159.
74 Chaboche J, Lesne P. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1), 1.
75 Schapery R. Journal of the Mechanics and Physics of Solids, 1990, 38(2), 215.
76 Yun T, Underwood B, Kim Y. Journal of Materials in Civil Engineering, 2010, 22(5), 415.
77 Underwood B, Yun T, Kim Y. Journal of Materials in Civil Engineering, 2011, 23(4), 459.
78 Wang Y, Kim Y. International Journal of Pavement Engineering, 2019, 20(10), 1182.
79 Caro S, Masad E, Bhasin A, et al. Construction and Building Materials, 2010, 24(7), 1184.
80 Zhang J, Li Z. Journal of Northeastern University(Natural Science), 2019, 40(10), 1496 (in Chinese).
张俊, 李志伟.东北大学学报(自然科学版), 2019, 40(10), 1496.
81 Zhang J, Huang X. Journal of Southeast University (Natural Scicene Edition), 2010, 40(1), 185 (in Chinese).
张久鹏, 黄晓明.东南大学学报(自然科学版), 2010, 40(1), 185.
82 Liu J, Li Q, Li H. Journal of Highway and Transporation Research and Development, 2014, 31(8), 13 (in Chinese).
刘俊卿, 李倩, 李红孝. 公路交通科技, 2014, 31(8), 13.
83 Zeng G, Yang X, Yin A, et al. Journal of Wuhan University of Science and Technology, 2011, 34(5), 364 (in Chinese).
曾国伟, 杨新华, 尹安毅, 等.武汉科技大学学报, 2011, 34(5), 364.
84 Fu K, Huang X. Highway Engineering, 2008, 33(3), 132 (in Chinese).
付凯敏, 黄晓明.公路工程, 2008, 33(3), 132.
85 Zhang Q, Gu X, Ding J, et al. Journal of Traffic and Transportation Engineering, 2021, 21(5), 104 (in Chinese).
张启鹏, 顾兴宇, 丁济同, 等.交通运输工程学报, 2021, 21(5), 104.
86 Safavizadeh S, Kim Y. Journal of Materials in Civil Engineering, 2017, 29(6), 04017011.
87 ASTM D8044-16. Standard Test Method for Evaluation of Asphalt Mixture Cracking Resistance using the Semi-Circular Bend Test (SCB) at Intermediate Temperatures, ASTM, 2016.
88 Ozer H, Al-Qadi I, Lambros J, et al. Construction and Building Mate-rials, 2016, 115, 390.
89 Kaseer F, Yin F, Arámbula-Mercado E, et al. Construction and Building Materials, 2018, 167, 286.
90 AASHTO TP 124-16. Standard method of test for determining the fracture potential of asphalt mixtures using semicircular bend geometry (SCB) at intermediate temperature, AASHTO, 2016.
91 Huang K. Investigation on the interface deterioration mechanisms and fai-lure behaviors of OGFC and underlying course composite structure. Master's Thesis, Central South University, China, 2021 (in Chinese).
黄凯. OGFC-下卧层组合结构层间弱化机理及失效行为研究. 硕士学位论文, 中南大学,2021.
92 ASTM D6931-17. Standard test method for indirect tensile (IDT) strength of asphalt mixtures, ASTM, 2017.
93 Roque R, Birgisson B, Drakos C, et al. Journal of the Association of Asphalt Paving Technologists, 2004, 73, 229.
94 AASHTO T322-11. Determining the creep compliance and strength of hot mix asphalt (HMA) using the indirect tensile test device, AASHTO, 2011.
95 Yin D, Chang C, Wang L, et al. Materials Report, 2021, 35(24), 24088 (in Chinese).
殷丹丹, 常春清, 王岚, 等.材料导报, 2021, 35(24), 24088.
96 Wang J, Qin Y, Zeng W, et al. Journal of Chang'an University (Natural Science Edition), 2019, 39(04), 27 (in Chinese).
王杰, 秦永春, 曾蔚, 等.长安大学学报(自然科学版), 2019, 39(4), 27.
97 Feng D, Cui S, Yi J, et al. China Journal of Highway and Transport, 2020, 33(7), 50 (in Chinese).
冯德成, 崔世彤, 易军艳, 等.中国公路学报, 2020, 33(7), 50.
98 Zhu H, Fan S, Yuan H, et al. Journal of Highway and Transportation Research and Development, 2019, 36(12), 1 (in Chinese).
朱洪洲, 范世平, 袁海, 等.公路交通科技, 2019, 36(12), 1.
99 Hong Z, Yang S. Journal of Railway Science and Engineering, 2019, 16(7), 1652 (in Chinese).
洪哲, 杨树.铁道科学与工程学报, 2019, 16(7), 1652.
100 Bui H, Saleh M. Engineering Fracture Mechanics, 2021, 242, 107452.
101 Wang J, Qin Y, Xu J, et al. Construction and Building Materials, 2020, 265, 120365.
102 Huang W, Zhang J, Lv Q, et al. Journal of Tongji University (Natural Science), 2020, 48(1), 1588 (in Chinese).
黄卫东, 张家伟, 吕泉, 等.同济大学学报(自然科学版), 2020, 48(11), 1588.
103 Du J, Ren D, Huang Y, et al. Journal of Southeast Jiaotong University, 2021, 56(4),864 (in Chinese).
杜健欢, 任东亚, 黄杨权, 等.西南交通大学学报, 2021, 56(4),864.
104 Zhang D, Hou S, Bian J, et al. Engineering Fracture Mechanics, 2016, 163, 416.
105 Zeng G, Yang X, Zhang C. Highway, 2017 (11), 199 (in Chinese).
曾国伟, 杨新华, 张川川. 公路, 2017(11), 199.
106 Huang T, Qi S, Jiang H, et al. Journal of Central South University (Science and Technology), 2019, 50(2), 460 (in Chinese).
黄拓, 漆帅, 蒋浩浩, 等.中南大学学报(自然科学版), 2019, 50(2), 460.
107 Yan K, Su X, Zhu F, et al. Journal of Guangxi University (Natural Science Edition), 2021, 46(1), 89 (in Chinese).
闫科伟, 苏鑫, 朱月风, 等.广西大学学报(自然科学版), 2021, 46(1), 89.
108 Wei J, Shi J, Liang J. Journal of Guangxi University (Natural Science Edition), 2020, 45(4), 766 (in Chinese).
魏建辉, 史俊杰, 梁军林.广西大学学报(自然科学版), 2020, 45(4), 766.
109 Zhai R, Chen Y, Yu Q, et al. Journal of Functional Materials, 2017, 48(9), 09129 (in Chinese).
翟瑞鑫, 陈永满, 余清华,等. 功能材料, 2017, 48(9), 09129.
110 Pour P, Aliha M, Keymanesh M. Engineering Fracture Mechanics, 2018, 190, 245.
111 Pirmohammad S, Bayat A. Construction and Building Materials, 2016, 120, 571.
112 Pérez-Jiménez F, Botella R, Moon K, et al. Construction and Building Materials, 2013, 48, 1067.
[1] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[2] 闵军雄, 张敏男, 戴光泽, 赵君文. 层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响[J]. 材料导报, 2023, 37(2): 21060076-7.
[3] 孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
[4] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[5] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[6] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[7] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[8] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[9] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[10] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[11] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[12] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[13] 崔雨萌, 张宇峰. 调湿材料吸放湿性能评价方法综述[J]. 材料导报, 2022, 36(24): 21040201-8.
[14] 陈亚军, 韦第升, 彭剑书, 宋先捷. 基于蚀坑形貌特征的2198-T8铝锂合金预腐蚀疲劳寿命预测[J]. 材料导报, 2022, 36(21): 21080028-7.
[15] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed