Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21100228-6    https://doi.org/10.11896/cldb.21100228
  高分子与聚合物基复合材料 |
基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造
何晓龙1, 陈志谦1, 李璐2, 石一非2,*
1 西南大学材料与能源学院,重庆 400715
2 重庆文理学院微/纳米光电材料与器件国际科技合作基地,微纳米光电材料与器件省部共建协同创新中心,重庆 402160
Research and Fabrication of a Special-shaped Luneburg Lens Antenna Based on Polymer-Ceramic Composite Material
HE Xiaolong1, CHEN Zhiqian1, LI Lu2, SHI Yifei2,*
1 School of Materials and Energy, Southwest University, Chongqing 400715, China
2 Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China/Province and Ministry of Micro and Nano Optoelectronic Materials and Devices Jointly Build Collaborative Innovation Center, Chongqing University of Arts and Sciences, Chongqing 402160, China
下载:  全 文 ( PDF ) ( 8563KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对目前龙伯透镜在工程应用中材料发展不成熟、质量大等问题,提出了一种质量小、性能优异的新型异形龙伯透镜天线。首先基于准保角变换法对低介电常数龙伯透镜进行压缩得到了一款高介电常数椭圆龙伯透镜,然后采用球形与椭球的特殊组合结构,得到了一款工作于X波段的高介电常数异形龙伯透镜天线。最后,利用聚二甲基硅氧烷(PDMS)和钛酸锶(SrTiO3)陶瓷粉体混合而成的聚合物-陶瓷复合材料制备了该透镜,将制备好的聚合物-陶瓷复合材料注入3D打印的模具中来说明异形龙伯透镜的制作过程。测试结果表明,所制作的透镜天线在8.5 GHz、10 GHz、12 GHz时的最大增益值分别为20.8 dBi、22.4 dBi、22.6 dBi,旁瓣电平均低于-19 dB,方位面上3 dB波束宽度小于9.8°。所提出的异形龙伯透镜具有质量轻、材料制备过程简单、制作周期短且在低温下即可无缝成型的优良特点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何晓龙
陈志谦
李璐
石一非
关键词:  异形龙伯透镜天线  聚合物-陶瓷复合材料  介电常数  3D打印技术  注塑成型    
Abstract: A high-dielectric constant special-shaped Luneburg lens with low quality and excellent performance was proposed in this work to solve the problem of the traditional Luneburg lens, such as the immature material development and heavy weight. The special-shaped Luneburg lens obtained by compressing a low-dielectric-constant Lumberg lens by the quasi-conformal transformation method were composed of a spherical Luneburg lens and two elliptical Luneburg lenses. The polymer-ceramic composites made of polydimethylsiloxane (PDMS) and strontium titanate (SrTiO3) ceramic powder was injected into the 3D printed mold to illustrate the fabrication process of the special-shaped Luneburg lens. The proposed lens had the excellent characteristics of high gain and low side lobe, which were validated by good agreement between the measurement and the simulation. The fabricated lens antenna had a maximum gain value of 20.8 dBi, 22.4 dBi, 22.6 dBi at 8.5 GHz, 10 GHz and 12 GHz, the side lobe level was lower than -19 dB, and the 3 dB beamwidth on the azimuth plane was lower than 9.8°, In addition, the proposed lens is light in weight, simple in material preparation process, and short in fabrication period. The major advantage of the proposed method is the capability to allow the special-shaped Luneburg lens to be fabricated at low temperature in a seamless manner.
Key words:  special-shaped Luneburg lens antenna    polymer-ceramic composite    permittivity    3D printing technique    injection molding
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TN821  
基金资助: 国家重点研发项目(2018YFB0407102);重庆市科委项目(cstc2019jcyjjqX0021;cstc2018jscxmsybX0099;cstc2019jcyj-msxmX0877)
通讯作者:  * 石一非,重庆文理学院材料科学与工程学院讲师。2005年电子科技大学本科毕业,2009年电子科技大学电磁场与微波技术专业毕业,2014年获得美国南达科他矿业理工学院博士学位。目前主要研究方向为电磁场与微波技术、天线设计、新型电磁材料。40207896@qq.com   
作者简介:  何晓龙,2019年6月毕业于西南石油大学,获得工学学士学位。现为西南大学材料与能源学院硕士研究生,在石一非博士的指导下进行研究。目前主要研究领域为微波天线。
引用本文:    
何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
HE Xiaolong, CHEN Zhiqian, LI Lu, SHI Yifei. Research and Fabrication of a Special-shaped Luneburg Lens Antenna Based on Polymer-Ceramic Composite Material. Materials Reports, 2023, 37(12): 21100228-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100228  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21100228
1 Junker G P, Kishk A A, Glisson A W, et al. IEEE Antennas and Propagation Magazine, 1995, 37(1), 40.
2 Leung K W. Proceedings of the IEEE, 2012, 100(7), 2181.
3 Zang Y D, Zhu Y Z, Song X O, et al. Telecommunication Engineering, 2021, 61(11), 1459(in Chinese).
臧雅丹, 朱永忠, 宋晓鸥, 等. 电讯技术, 2021, 61(11), 1459.
4 Lei S, Han K, Li X, et al. IEEE Antennas and Wireless Propagation Letters, 2021, 20(4), 528.
5 Lou Y H, Zhu Y X, Fan G F, et al. IEEE Antennas and Wireless Propagation Letters, 2021, 20(2), 234.
6 Luneburg R K. American Journal of Physics, 1966, 34(1), 80.
7 Tian J X, Guo J, Mo C J. Aerodynamic Missile Journal, 2013(5), 84(in Chinese).
田江晓, 郭杰, 莫崇江. 飞航导弹, 2013(5), 84.
8 Ran H Y, Xie Q, Li G Y, et al. Modern Informationn Technology, 2020, 4(14), 50(in Chinese).
冉华英, 谢琪, 李高英, 等. 现代信息科技, 2020, 4(14), 50.
9 Wang H, Cheng W H, Zhou T T, et al. Chemical Production and Technology, 2020, 26(2), 21(in Chinese).
王海, 程文海, 周涛涛, 等. 化工生产与技术, 2020, 26(2), 21.
10 Demetriadou A, Hao Y. Optics Express, 2011, 19(21), 19925.
11 Carpenter M P, Osward M M, Gibbs D A. US patent, 6433936, 2002.
12 Peeler G D M, Coleman H P. IEEE Transactions on Antennas and Propagation, 1958, 6(2), 202.
13 Zhang X, Zhou Y J, Huang L H. Materials Reports, 2017, 31(10), 96(in Chinese).
张雄, 周永江, 黄丽华. 材料导报, 2017, 31(10), 96.
14 Ingerson P G. In:IEEE Antennas and Propagation Society International Symposium. Montreal, QC, Canada, 1997, pp. 862.
15 Rondineau S, Himdi M, Sorieux J. IEEE Antennas and Wireless Propagation Letters, 2003, 2(1), 163.
16 Saghlatoon H, Mirzavand R, Honari M M, et al. In:2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. Montreal, QC, Canada, 2020, pp. 1465.
17 Min L, Ng W R, Chang K, et al. In:IEEE MTT-S International Microwave Symposium. Baltimore, MD, USA, 2011, pp. 1.
18 Guo G, Xia Y, Wang C, et al. IEEE Transactions on Antennas and Pro-pagation, 2020, 68(12), 8139.
19 Loeb L A, Amert A K, Whites K W. IEEE Transactions on Antennas and Propagation, 2014, 62(12), 6140.
20 Shi Y, Amert A K, Whites K W. IEEE Transactions on Antennas and Propagation, 2015, 64(2), 1.
21 Cao S W, Zhou Y J, Cheng H F. Chinese Journal of Optics, 2017, 10(2), 164(in Chinese).
曹尚文, 周永江, 程海峰. 中国光学, 2017, 10(2), 164.
22 Kwon D H. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1125.
23 Zhao C Y. Studies on key techniques of ultra-wide-angle scanning multi-beam lens antennas. Master’s Thesis, University of Electronic Science and Technology of China, 2020(in Chinese).
赵春雨. 超宽角扫描多波束透镜天线关键技术研究. 硕士学位论文, 电子科技大学, 2020.
24 Wang C, Xia Y, Guo G, et al. IEEE Transactions on Antennas and Pro-pagation, 2020, 68(7), 1.
25 Shi Y, Bhowmik L M, Amert A K, et al. In:2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Memphis, TN, USA, 2014, pp. 225.
26 Shi Y. Miniaturization of ultrawideband monocone antennas using dielectric loading. Ph. D. Thesis, South Dakota School of Mines and Techno-logy, USA, 2014.
27 Weir W B. Proceedings of the IEEE, 1974, 62(1), 33.
[1] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[2] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[3] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[4] 崔立龙, 凌天清, 曾凡贵, 梁丽娟, 李汝凯. 基于探地雷达的密级配覆水沥青层的空隙率检测[J]. 材料导报, 2021, 35(4): 4092-4098.
[5] 张静茹, 张志昂, 韩笑, 房蕊, 徐若歆, 赵丽丽. 提高PVDF基有机-无机柔性复合膜储能密度的研究新进展[J]. 材料导报, 2021, 35(23): 23162-23170.
[6] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[7] 郑晗煜, 蒲永平, 李来平, 薛建嵘, 高选乔, 胡忠武, 任广鹏. 储能介电玻璃陶瓷的制备及研究进展[J]. 材料导报, 2019, 33(Z2): 20-23.
[8] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[9] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[10] 张美丽, 辛勇. 基于RHCM与CIM熔接痕形成的分子形态演化研究[J]. 材料导报, 2019, 33(18): 3125-3129.
[11] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[12] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[13] 李建雄, 贾红玉, 陈纯锴, 赵晓明. 基于各向异性织物的电磁屏蔽性能仿真计算[J]. 材料导报, 2018, 32(18): 3235-3238.
[14] 李颖, 梅园, 王颖, 孟凡彬, 周祚万. 面向金属/树脂复合材料的纳米注塑成型技术综述[J]. 《材料导报》期刊社, 2018, 32(13): 2295-2303.
[15] 杨文彬,,张凯,廖治强,程金旭,谢长琼,吴菊英,范敬辉. 导热绝缘h-BN/MVQ/EVA复合材料的双逾渗效应[J]. 《材料导报》期刊社, 2017, 31(7): 137-142.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed