Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3125-3129    https://doi.org/10.11896/cldb.18070152
  金属与金属基复合材料 |
基于RHCM与CIM熔接痕形成的分子形态演化研究
张美丽1, 2, 辛勇1
1 南昌大学机电工程学院,南昌 330031
2 九江学院机械与材料工程学院,九江 332005
Research on Molecular Morphology Evolution Based on Weld Line Formation of RHCM and CIM
ZHANG Meili1,2, XIN Yong1
1 School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031
2 School of Mechanical & Materials Engineering, Jiujiang University, Jiujiang 332005
下载:  全 文 ( PDF ) ( 3123KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对注塑成型中的熔接痕问题,建立了聚合物流动前锋汇合时垂直取向的初始界面模型。采用分子动力学方法,通过对比分析传统注塑成型(Conventional injection molding, CIM)和快速热循环注塑成型(Rapid heat cycle molding, RHCM)熔接痕界面分子链的迁移扩散、分子链取向、回转半径及界面结合能,研究了熔接痕界面弱连接与强连接的分子形态演化规律。结果表明,温度低、冷却速率快的CIM熔接痕表层和中间层分子取向快速冻结,分子链运动受阻,扩散速率慢,使得熔接痕界面分明,界面结合能低,分子形态变化不大,形成弱连接;而RHCM熔接痕及CIM熔接痕芯层高温保持时间较长,保压阶段冷却速率缓慢,有利于分子链的迁移扩散,同时促进分子链松弛,解取向明显,回转半径减小,使聚合物分子链团呈缠绕卷曲状态,界面分子链穿绕缠结在一起,界面结合能也增大,形成强连接。因此,熔接痕界面聚合物分子形态演化的实质是取向分子链的松弛和相互扩散的过程,而RHCM工艺则极大促进了分子形态演化进程,显著改善了熔接痕的弱连接问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张美丽
辛勇
关键词:  熔接痕  分子形态  快速热循环注塑成型  传统注塑成型    
Abstract: Aimed at the problem of weld line during injection molding process, the initial interface model of vertical orientation was established when polymer flow fronts meet. Based on the molecular dynamic simulation method, molecular morphology evolution mechanism of poor and strong bond was researched by comparing migration and diffusion of molecular chain, chain orientation, radius of gyration and bonding energy at CIM and RHCM weld line interface. The results indicate that the molecular orientation of the surface and intermediate layer of CIM weld line is rapidly frozen with low temperature and fast cooling rate. Molecular chain motion is blocked and the diffusion rate is low. The weld line interface is ob-vious and interface bonding energy is low. The molecular morphology changes little, so the interface forming poor bond. However, RHCM weld line and the core layer of CIM weld line have a long time to maintain high temperature and the cooling rate is slow at packing stage, which is beneficial to the migration and diffusion of molecular chain and promotes the relaxation of molecular chain. Chain disorientation is obvious and the ra-dius of gyration reduces. The polymer molecular chains show winding and curling state and intertwine together at the interface. So the interface bonding energy increases and the interface forms strong bond. Therefore, the essence of molecular morphology evolution at weld line interface is the process of the relaxation and interdiffusion of oriented molecular chain. RHCM process greatly promotes the course of molecular morphology evolution and dramatically improves poor bond of weld line.
Key words:  weld line    molecular morphology    rapid heat cycle molding    conventional injection molding
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TQ320  
基金资助: 国家自然科学基金(51365038);江西省自然科学基金(20161BAB206123)
通讯作者:  xinyong_sh@sina.com   
作者简介:  张美丽,南昌大学“材料加工工程”博士研究生,主要从事注塑成型聚合物微观形态研究。
辛勇,二级教授、博士生导师、工学博士(后),享受国务院特殊津贴专家,主要从事聚合物微纳结构精密成型技术。主持完成了国家自然科学基金2项及省(部)级重点科技项目30余项,科技成果获省(部)级科技进步奖5项,发表学术论文200余篇。
引用本文:    
张美丽, 辛勇. 基于RHCM与CIM熔接痕形成的分子形态演化研究[J]. 材料导报, 2019, 33(18): 3125-3129.
ZHANG Meili, XIN Yong. Research on Molecular Morphology Evolution Based on Weld Line Formation of RHCM and CIM. Materials Reports, 2019, 33(18): 3125-3129.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070152  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3125
[1] Nguyen-Chung T. Rheologica Acta, 2004, 43 (3), 240.
[2] Kovács J G, Sikló B. Polymer Testing, 2010, 29 (7), 910.
[3] Fellahi S, Meddad A, Fisa B, et al. Advances in Polymer Technology, 1995, 14 (3), 169.
[4] Fathi S, Behravesh A H. Polymer-Plastics Technology and Engineering, 2008, 47 (7), 666.
[5] Zhou Y, Mallick P K. Polymer Composites, 2011, 32(2), 268.
[6] Wu C H, Liang W J. Polymer Engineering and Science, 2005, 45, 1021.
[7] Ozcelik B, Kuram E, Topal M M. International Communications in Heat and Mass Transfer, 2012, 39(2), 275.
[8] Dzulkipli A A, Azuddin M. Procedia Engineering, 2017, 184, 663.
[9] Zhao G Q, Wang G L, Guan Y J. Journal of Plasticity Engineering, 2009, 16 (1), 190.
[10] Marco F, Giovanni L. AIP Conference Proceedings, 2011, 1353, 797.
[11] Zhao G Q, Wang G L, Guan Y J, et al. Polymers for Advanced Technologies, 2011, 22(5), 476.
[12] Chen S C, Jong W R, Chang J A. Journal of Applied Polymer Science, 2006, 101(2), 1174.
[13] Ling C J, L X Y, Fan F C, et al. Chemical Engineering Science, 2012, 84, 292.
[14] Paul W G. Polymer, 2004, 45(11), 3901.
[15] Shi M N, Zhang Y C, Cheng L S, et al. Journal of Physical Chemistry B, 2016, 120(37), 10018.
[16] Zhou M Y, Jiang B Y, Weng C. Computational Materials Science, 2016, 120, 36.
[1] 郝建民,刘向辉,陈永楠,陈 宏. 喷枪扫描速率对常压冷等离子喷涂Cu薄膜的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1623-1627.
[2] 应建行, 刘智峰, 贺登峰, 陈忠仁. LLDPE/EPDM共混物的超临界CO2微孔发泡研究[J]. 《材料导报》期刊社, 2018, 32(4): 616-620.
[3] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[4] 曹文华, 辛勇, 刘东雷, 喻选. 等规聚丙烯注塑成型冷却固化分子机制研究*[J]. 《材料导报》期刊社, 2017, 31(20): 152-157.
[5] 王克强, 叶深杰, 王文锦, 付甲, 陈忠仁. 不同共混方式下非对称嵌段共聚物PS-b-PMMA对PCHMA/PMMA
体系增容效果的研究:界面与胶束的竞争*
[J]. 《材料导报》期刊社, 2017, 31(8): 98-103.
[6] 叶深杰, 余锋, 王克强, 王文锦, 陈忠仁. 嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 87-93.
[7] 黄林, 杨艳琼, 余峰, 付甲, 陈忠仁. 嵌段共聚物增容共混聚合物的相形貌及胶束迁移行为研究*[J]. 《材料导报》期刊社, 2017, 31(4): 100-104.
[8] 曹文华, 辛勇, 刘东雷. 注塑充模聚合物流动形态与力学行为分子机制研究*[J]. 《材料导报》期刊社, 2017, 31(2): 142-149.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[10] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed