Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 152-157    https://doi.org/10.11896/j.issn.1005-023X.2017.020.031
  计算模拟 |
等规聚丙烯注塑成型冷却固化分子机制研究*
曹文华, 辛勇, 刘东雷, 喻选
南昌大学机电工程学院,南昌 330031
Macromolecular Solidification Mechanism of the Isotropic Polypropylene (iPP) Material During the Injection Cooling Stage
CAO Wenhua, XIN Yong, LIU Donglei, YU Xuan
School of Mechanical & Electrical Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 2478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对等规聚丙烯(iPP)在注塑成型冷却过程中的液-固相变与大分子形构问题,采用分子模拟实验的方法,研究了iPP材料在注塑冷却过程中的分子固化与形态演化的分子机制。建立了聚合度依次为24、36、51、72、120,链数为36、24和16的iPP胞元体系,基于Smart Minimizer与SA算法实现了能量初始化;基于周期性边界并引入COMPASS力场及Velocity-Verlet算法,实现了体系冷却固化过程的分子模拟实验。结果表明:不同模拟体系的Tg结果符合Flory自由体积理论;固化前后iPP大分子链主链键长、键角等结构参数均呈高斯分布,温度越低键长与键角分布越集中,符合无外力加载条件下的缠结大分子链的冷却松弛过程;〈h〉和〈Rg〉均随聚合度的增大而增大,降温过程中〈h〉呈高斯分布状态,而〈Rg〉分布趋于集中,一方面表明冷却固化过程中大分子链由初始取向排布逐步恢复至缠结状态,另一方面体现了固化结晶过程;材料聚合度越大,降温过程中分子迁移或固化速率越小,且当温度高于Tg时,聚合度越小,降温过程体系扩散系数下降梯度越大,而温度下降至Tg以下则无明显规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹文华
辛勇
刘东雷
喻选
关键词:  等规聚丙烯  注塑成型  冷却  固化  分子机制    
Abstract: In response to the micro-mechanism of the liquid-solid phase transition and macromolecular structure evolution of the isotropic polypropylene (iPP) material during the injection molding cooling process, the macromolecular solidification and confi-guration evolution mechanism was studied based on the molecular dynamic simulation method. The different iPP cell systems were built, of which the polymerization degree were 24, 36, 51, 72, 120 and chain number were 36, 24 and 16, successively. The energy initialization was performed using the smart minimization method followed by the simulated annealling (SA) method. Coupling with the periodic boundary conditions, COMPASS force field and the velocity-verlet algorithm, the cooling simulation was launched. The results indicate that the glass transition temperature (Tg) of each simulated cell coincides well with the Flory’s free volume theory. The bond length as well as bond angle presents a Gaussian distribution, the lower the temperature, the more concentrated distribution of them, agreeing with the cooling free relax process of the macromolecular. The 〈h〉 and 〈Rg〉 of the polymer chains are all increasing with the polymerization degree. 〈h〉 shows a Gaussian distribution during the declining of the temperature, while 〈Rg〉 exhibits a shrinkage trend, which indicates the macromolecular chains configuration tangle again during this stage from the orientated phase, and another crystallize phase is taken place. The migration and solidification rate give a negative correction with the increasing polymerization degree. And the diffusion coefficient exhibits steeper declining trend with higher polymerization degree when the temperature is above the glass transition temperature.
Key words:  isotropic polypropylene    injection molding    cooling    solidification    molecular mechanism
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TQ320  
基金资助: *国家自然科学基金(51565034;1365038);江西省科技支撑计划项目(20122BBE500044;20151BBE50033)
作者简介:  曹文华:男,1970年生,博士研究生,副教授,主要从事注塑成型聚合物定向迁移与排布数值理论与算法研究 E-mail:caowenhua@ncu.edu.cn 刘东雷:通讯作者,1977年生,博士后,副教授,主要从事聚合物成型加工形态结构与性能关系研究 E-mail:dlliu@ncu.edu.cn
引用本文:    
曹文华, 辛勇, 刘东雷, 喻选. 等规聚丙烯注塑成型冷却固化分子机制研究*[J]. 《材料导报》期刊社, 2017, 31(20): 152-157.
CAO Wenhua, XIN Yong, LIU Donglei, YU Xuan. Macromolecular Solidification Mechanism of the Isotropic Polypropylene (iPP) Material During the Injection Cooling Stage. Materials Reports, 2017, 31(20): 152-157.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.031  或          http://www.mater-rep.com/CN/Y2017/V31/I20/152
1 Tashiro K, Sasaki S. Structural changes in the ordering process of polymers as studied by an organized combination of the various measurement techniques [J]. Prog Polym Sci, 2003,28(3):451.
2 Hobbs J K, Farrance O E, Kailas L. How atomic force microscopy has contributed to our understanding of polymer crystallization [J]. Polymer, 2009,50(18):4281.
3 Mandelkern L. Crystallization kinetics of homopolymers: overall crystallization: A review [J]. Biophys Chem, 2004,112(2-3):109.
4 Schick C. Differential scanning calorimetry (DSC) of semicrystalline polymers [J]. Anal Bioanal Chem, 2009,395(6):1589.
5 Wang Z G, Benjamin S. Probing the early stages of melt crystallization in polypropylene by simultaneous small-and wide-angle X-ray scattering and laser light scatterin [J]. Macromolecules, 2000,33(3):978.
6 Sanmartín S, Ramos J, Vega J F, et al. Strong influence of branc-hing on the early stage of nucleation and crystal formation of fast cooled ultralong n-alkanes as revealed by computer simulation [J]. Eur Polym J, 2014,50(1):190.
7 Yi P, Rutledge G C. Molecular simulation of crystal nucleation in n-octane melts [J]. J Chem Phys, 2009,131(13):134902.
8 Koyama A, Yamamoto T, Fukao K, et al. Molecular dynamics studies on polymer crystallization from a stretched amorphous state [J]. J Macromol Sci Part B, 2003,42(3-4):821.
9 Sultanov V I, Atrazhev V V, Dmitriev D V, et al. Molecular dynamics simulation of chains mobility in polyethylene crystal [J]. Jetp Lett, 2014,98(5):332.
10Yamamoto T. Molecular dynamics of polymer crystallization revisited: Crystallization from the melt and the glass in longer polyethylene [J]. J Chem Phys, 2013,139(5):054901.
11Wang J, Zhu X, Lu X, et al. On structures and properties of polyethylene during heating and cooling processes based on molecular dynamics simulations [J]. Comput Theor Chem, 2015,1052:26.
12Koyama A, Yamamoto T, Fukao K, et al. Molecular dynamics si-mulation of polymer crystallization from an oriented amorphous state[J]. Phys Rev E, 2002,65(5 Pt 1):8675.
13Yamamoto T, Sawada K. Molecular-dynamics simulation of crystallization in helical polymers [J]. J Chem Phys, 2005,123(23):234906.
14Wei C. Adsorption of an alkane mixture on carbon nanotubes: Selectivity and kinetics [J]. Phys Rev B Condensed Matter, 2009,80(8):085409.
15Thompson P A, Robbins M O. Shear flow near solids: Epitaxial order and flow boundary conditions [J]. Phys Rev A, 1990,41(12):6830.
16Bunte S W, Sun H. Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the COMPASS force field [J]. J Phys Chem B, 2000,104(11):2477.
17Fox T G, Flory P J. Second-order transition temperatures and rela-ted properties of polystyrene. I. Influence of molecular weight [J]. J Appl Phys, 1950,21(6):581.
18Fox T G, Flory P J. The glass temperature and related properties of polystyrene. Influence of molecular weight [J]. J Polym Sci, 1954,14(75):315.
19Wada Y, Hotta Y, Suzuki R. Glass transition and relaxation in the amorphous phase of isotactic polypropylene [J]. J Polym Sci Part C Poly Symp, 2007,23(2):583.
20Waheed N, Ko M J, Rutledge G C. Molecular simulation of crystal growth in long alkaness [J]. Polymer, 2005,46(20):8689.
21Wang Q, Keffer D J, Nicholson D M. A coarse-grained model for polyethylene glycol polymer [J]. J Chem Phys, 2011,135(21):214903.
22Tseng H C, Chang R Y, Wu J S. Molecular structural property and potential energy dependence on none quilibrium-thermodynamic state point of liquid n-hexadecane under shear [J]. J Chem Phys, 2011,134(4):31.
23Mohammad A, Eckhard S. Molecular dynamics investigation of the thermo-responsive polymer poly (N-isopropylacrylamide) [J]. Macromol Theor Simul, 2012,21(2):106.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[3] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[4] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[5] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[6] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[7] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[8] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[9] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[10] 杨卓鸿, 叶希韵, 黄家健, 梁斌, 邝少杰, 袁腾. 桐油基紫外光固化材料体系构建的研究进展[J]. 材料导报, 2018, 32(21): 3831-3838.
[11] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[12] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[13] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[14] 李颖, 梅园, 王颖, 孟凡彬, 周祚万. 面向金属/树脂复合材料的纳米注塑成型技术综述[J]. 《材料导报》期刊社, 2018, 32(13): 2295-2303.
[15] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed