Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1623-1627    https://doi.org/10.11896/j.issn.1005-023X.2018.10.010
  材料研究 |
喷枪扫描速率对常压冷等离子喷涂Cu薄膜的影响
郝建民,刘向辉,陈永楠,陈 宏
长安大学材料科学与工程学院,西安 710054
Effect of Gun Scanning Rate on Cu Films Prepared by Atmospheric Pressure Cold Plasma Spraying
HAO Jianmin, LIU Xianghui, CHEN Yongnan, CHEN Hong
College of Materials Science and Engineering, Chang’an University, Xi’an 710054
下载:  全 文 ( PDF ) ( 2535KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了喷枪扫描速率对常压冷等离子喷涂Cu薄膜过程的影响。采用N2和NH3的混合气体作为等离子体气源产生常压冷等离子体,将Cu (NO3)2溶液雾化后通入等离子体射流的下游,雾化驱动气体是流量为4 L/min的N2,保护气体是流量为12 L/min的Ar,利用射流型常压冷等离子体喷涂Cu薄膜。通过X射线光电子能谱仪分析制备的铜薄膜中铜元素化学状态的变化,用扫描电子显微镜观察制备的铜薄膜的微观形貌,讨论了制备薄膜过程中喷枪扫描速率的作用和影响。以N2和NH3的混合气体作为等离子体气源喷涂Cu薄膜时,在实验范围内,随着喷枪扫描速率的增大,制备的薄膜样品中铜元素的化学状态从Cu2+变为Cu+,再变为Cu,且薄膜的晶粒尺寸逐渐减小。在喷涂过程中,Cu(NO3)2在等离子体中会发生分解反应,并产生中间产物,NH3在等离子体中产生的活性粒子会与中间产物反应沉积得到Cu薄膜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝建民
刘向辉
陈永楠
陈 宏
关键词:  常压  扫描速率  等离子体  铜薄膜    氧化铜    
Abstract: This work aims to study the effect of gun scanning rate on atmospheric cold plasma spraying of Cu film. N2 and NH3 mixed gas was used as the plasma gas source. The copper nitrate solution was atomized and passed into the downstream of the plasma jet. The atomization driving gas was N2 with a flow rate of 4 L/min, the shielding gas was Ar with a flow rate of 12 L/min. The chemical state of copper in the prepared copper film was analyzed by X-ray photoelectron spectroscopy. The microstructures of the prepared copper films were observed by scanning electron microscopy (SEM). The effects of the scanning rate on the spray gun were discussed. As the increasing scanning rate of the gun in the experimental range, the chemical state of the copper elements in the prepared film samples was changed from Cu2+ to Cu+ and then to Cu, and the grain size of the film was gradually reduced. In the spraying process, Cu(NO3)2 in the plasma decomposition reaction would produce intermediates, NH3 in the plasma generated the active particles would react with the intermediate product and deposited to obtain Cu film.
Key words:  atmospheric pressure    scanning rate    plasma    copper film    copper    copper oxide
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TQ320.7  
基金资助: 国家自然科学基金(51301022)
作者简介:  郝建民:男,1961年生,博士,教授,主要研究方向为材料表面改性 E-mail:1951168899@qq.com
引用本文:    
郝建民,刘向辉,陈永楠,陈 宏. 喷枪扫描速率对常压冷等离子喷涂Cu薄膜的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1623-1627.
HAO Jianmin, LIU Xianghui, CHEN Yongnan, CHEN Hong. Effect of Gun Scanning Rate on Cu Films Prepared by Atmospheric Pressure Cold Plasma Spraying. Materials Reports, 2018, 32(10): 1623-1627.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.010  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1623
1 Donegan M, Milosavljevic V, Dowling D P. Activation of PET using an RF atmospheric plasma system[J]. Plasma Chemistry & Plasma Processing,2013,33(5):941.
2 Moritzer E, Budde C, Leister C. Effect of atmospheric pressure plasma pre-treatment and aging conditions on the surface of thermoplastics[J]. Welding in the World Le Soudage Dans Le Monde,2014,59(1):23.
3 Homma T, Furuta M, Takemura Y. Inactivation of escherichia coli using the atmospheric pressure plasma jet of Ar gas[J]. Japanese Journal of Applied Physics,2013,52(3):6201.
4 Colagar A H, Memariani H, Sohbatzadeh F, et al. Nonthermal atmospheric argon plasma jet effects on escherichia coli, biomacromo-lecules[J]. Applied Biochemistry & Biotechnology,2013,171(7):1617.
5 Hsu C M, Lien S T, Yang Y J, et al. Deposition of transparent and conductive ZnO films by an atmospheric pressure plasma-jet-assisted process[J]. Thin Solid Films,2014,570:423.
6 Liu W J, Wang R C. Novel low temperature atmospheric pressure plasma jet systems for silicon dioxide and poly-ethylene thin film de-position[J]. Surface & Coatings Technology,2011,206(5):925.
7 Hsu Y W, Li H C, Yang Y J, et al. Deposition of zinc oxide thin films by an atmospheric pressure plasma jet[J]. Thin Solid Films,2011,519(10):3095.
8 Barnat E V, Nagakura D, Wang P I, et al. Real time resistivity measurements during sputter deposition of ultrathin copper films[J]. Journal of Applied Physics,2002,91(3):1667.
9 Cho N I, Nam H G, Choi Y, et al. Chemical vapor deposition of copper thin films for multi-level interconnections[J]. Microelectronic Engineering,2003,66(1-4):415.
10 Kremmer K, Yezerska O, Schreiber G, et al. Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films[J]. Thin Solid Films,2007,515(17):6698.
11 Liao Y C, Kao Z K. Direct writing patterns for electroless plated copper thin film on plastic substrates[J]. ACS Applied Materials & Interfaces,2012,4(10):5109.
12 Liu X, Jiang Z, Guo Y, et al. Fabrication of super-hydrophobic nano-sized copper films by electroless plating[J].Thin Solid Films,2010,518(14):3731.
13 Zheng X, Chen G, Zhang Z, et al. A two-step process for surface modification of poly(ethylene terephthalate) fabrics by Ar/O2, plasma-induced facile polymerization at ambient conditions[J]. Surface & Coatings Technology,2013,226(8):123.
14 Homola T, Matouek J, Medvecká V, et al. Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning[J]. Applied Surface Science,2012,258(18):7135.
15 Jin H J, Shiratani M, Kawasaki T, et al. Plasma-enhanced metal organic chemical vapor deposition of high purity copper thin films using plasma reactor with the H atom source[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,1999,17(3):726.
16 Hodgkinson J L, Massey D, Sheel D W. The deposition of copper-based thin films via atmospheric pressure plasma-enhanced CVD[J]. Surface & Coatings Technology,2013,230(10):260.
17 Zhao P, Zheng W, Watanabe J, et al. Highly conductive Cu thin film deposition on polyimide by RF-driven atmospheric pressure plasma jets under nitrogen atmosphere[J]. Plasma Processes & Polymers,2015,12(5):431.
18 Urabe K, Hiraoka Y, Sakai O. Hydrazine generation for the reduction process using small-scale plasmas in an argon/ammonia mixed gas flow[J]. Plasma Sources Science & Technology,2013,22(22):032003.
19 Eckardt T, Malléner W, Stver D. Reactive plasma spraying of silicon in controlled nitrogen atmosphere, in thermal spray industrial applications[J]. Journal of Antimicrobial Chemotherapy,1994,41(3):417.
20 Hernandez J, Wrschka P, Oehrlein G S. Surface chemistry studies of copper chemical mechanical planarization[J]. Journal of the Electrochemical Society,2001,148(7):G389.
21 Feng Y, Tan K L, Hsieh A K, et al. Corrosion mechanisms and products of copper in aqueous solutions at various pH values[J]. Corrosion -Houston Tx-,1997,53(5):389.
22 Njeh A, Wieder T, Fuess H. Reflectometry studies of the oxidation kinetics of thin copper films[J]. Surface & Interface Analysis,2010,33(7):626.
23 Gao W, Gong H, He J, et al. Oxidation behaviour of Cu thin films on Si wafer at 175—400 ℃[J]. Materials Letters,2001,51(1):78.
24 Nagai H, Hiramatsu M, Hori M, et al. Etching organic low dielectric film in ultrahigh frequency plasma using N2/H2 and N2/NH3 gases[J]. Journal of Applied Physics,2003,94(3):1362.
25 Kusano Y, Leipold F, Fateev A, et al. Production of ammonia-derived radicals in a dielectric barrier discharge and their injection for denitrification[J]. Surface & Coatings Technology,2005,200(1-4):846.
26 Park J, Giles N D, Moore J, et al. A comprehensive kinetic study of thermal reduction of NO2 by H2[J]. Journal of Physical Chemistry A,2010,102(49):10099.
27 Byun Y, Ko K B, Cho M, et al. Effect of hydrogen generated by dielectric barrier discharge of NH3 on selective non-catalytic reduction process[J]. Chemosphere,2009,75:815.
28 Nyman H, Talonen T, Roine A, et al. Statistical approach to quality control of large thermodynamic databass[J]. Metallurgical & Materials Transactions B,2012,43(5):1133.
[1] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[4] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[5] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[6] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[7] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[8] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[9] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[10] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
[11] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[12] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[13] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[14] 刘星, 霍俊丽, 李婷婷, 林佳弘, 楼静文. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16): 2799-2803.
[15] 杨超, 陶鲭驰, 丁言飞. 无铅环保黄铜研究新进展[J]. 材料导报, 2019, 33(13): 2109-2118.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed