Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21100196-6    https://doi.org/10.11896/cldb.21100196
  无机非金属及其复合材料 |
钢渣-矿渣复合水泥基材料3D打印性能
朱伶俐1, 杨章1, 赵宇2, 管学茂1,*, 武喜凯2
1 河南理工大学材料科学与工程学院,河南 焦作 454000
2 河南理工大学土木工程学院,河南 焦作 454000
3D Printing Performance of Composite Cement-based Materials with Blast Furnace Slag and Steel Slag
ZHU Lingli1, YANG Zhang1, ZHAO Yu2, GUAN Xuemao1,*, WU Xikai2
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2 School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
下载:  全 文 ( PDF ) ( 11934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高固体废弃物的资源化利用,探究利用钢渣制备3D打印水泥基材料的可行性,研究了钢渣、矿渣的质量比对复合水泥基材料流变特性、可打印性和力学性能的影响规律。结果表明,随着钢渣质量的增加,浆体的流动度和静态屈服应力增大,塑性粘度减小,可挤出性增强,变形率降低,同时抗压强度显著降低。通过Zeta电位测试发现,随着钢渣掺量的增加,Zeta电位绝对值变小,胶体颗粒间引力增大,导致静态屈服应力增大。而随着矿渣掺量的增加,浆体固含量增多,固体颗粒间摩擦加剧,产生了更多絮凝结构和网状结构,提高了浆体的塑性粘度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱伶俐
杨章
赵宇
管学茂
武喜凯
关键词:  3D打印水泥基材料  流变  可打印性  钢渣  矿渣    
Abstract: In order to improve the resource utilization of solid waste and explore the feasibility of using steel slag to prepare 3D printing cement-based materials, the influence of the mass ratio of steel slag to blast furnace slag on the rheology, printability and mechanical properties of compo-site cement-based materials is researched. The results showed that the fluidity and static yield stress of paste increased, the plastic viscosity decreased, the extrudability increased, the deformation rate decreased, and the compressive strength decreased significantly with the increase of steel slag content. It is found that the absolute value of Zeta potential decreases, the gravity between colloidal particles increases with the increase of steel slag content, which results the increase of static yield stress. The solid content of paste increased, the friction between solid particles intensified with the increase of blast furnace slag content, which produced more flocculation structure and network structures, and improved the plastic viscosity of paste.
Key words:  3D printing cement-based material    rheology    printability    steel slag    blast furnace slag
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1504513;U1905216)
通讯作者:  * 管学茂,河南理工大学材料科学与工程学院教授、博士研究生导师。1988年于武汉理工大学毕业后到河南理工大学工作至今。目前主要从事绿色建筑材料、矿山工程材料等方面的研究工作。近五年承担的国家、省部级和企业科技项目21项,获授权发明专利5项。近五年发表学术论文87篇,SCI/EI收录12篇,包括《建筑材料学报》《材料导报》、Advanced Materials Research、Construction and Building Materials等。guanxuemao@hpu.edu.cn   
作者简介:  朱伶俐,2004年6月、2007年6月分别于河南理工大学获得工学学士学位和硕士学位。现为河南理工大学材料科学与工程专业博士研究生。目前主要研究领域为矿用材料和新型建筑材料。
引用本文:    
朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
ZHU Lingli, YANG Zhang, ZHAO Yu, GUAN Xuemao, WU Xikai. 3D Printing Performance of Composite Cement-based Materials with Blast Furnace Slag and Steel Slag. Materials Reports, 2023, 37(12): 21100196-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100196  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21100196
1 Gao B P, Hao Y D, Zhang S L, et al. Environmental Engineering, 2016, 34(S1), 776 (in Chinese).
高本恒, 郝以党, 张淑苓, 等. 环境工程, 2016, 34(S1), 776.
2 Sun P, Guo Z C. Bulletin of the Chinese Ceramic Society, 2014, 33(09), 2230 (in Chinese).
孙朋, 郭占成. 硅酸盐通报, 2014, 33(09), 2230.
3 You N, Li B, Cao R, et al. Construction and Building Materials, 2019, 227 (10), 1166141.
4 Huang Y, Hui C. In: The Seventh International Conference on Waste Management and Technology. Wuhan, 2012, pp.791.
5 Feng C H, Dou Y, Li D X. Journal of Nanjing Tech University(Natural Science Edition), 2011, 33(01), 74 (in Chinese).
冯春花, 窦妍, 李东旭. 南京工业大学学报(自然科学版), 2011, 33(01), 74.
6 Guo X, Yang J, Xiong G. Cement and Concrete Composites, 2020, 114(6), 103820.
7 Panda B, Unluer C, Tan M J. Cement and Concrete Composites, 2018, 94, 307.
8 Zhao Y, Liu W S, Wang H, et al. Materials Reports, 2020, 34(S2), 1217 (in Chinese).
赵颖, 刘维胜, 王欢, 等. 材料导报, 2020, 34(S2), 1217.
9 Zhang D W, Wang D M, Pu C A, et al. Journal of Basic Science and Engineering, 2018, 26(03), 596 (in Chinese).
张大旺, 王栋民, 朴春爱, 等. 应用基础与工程科学学报, 2018, 26(03), 596.
10 Roussel N. Cement and Concrete Research, 2018, 112, 76.
11 Perrot A, Rangeard D, Pierre A. Materials and Structures, 2016, 49(4), 1213.
12 Wallevik J E. Journal of Non-Newtonian Fluid Mechanics, 2008, 155(3), 116.
13 Jiao D W, An X P, Shi C J, et al. Journal of the Chinese Ceramic Society, 2017, 45(09), 1360 (in Chinese).
焦登武, 安晓鹏, 史才军, 等. 硅酸盐学报, 2017, 45(09), 1360.
14 Feys D, Wallevik J E, Yahia A, et al. Materials and Structures, 2013, 46, 289.
15 Zhao S R, Zhang K F, Jiao G F, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(S1), 308 (in Chinese).
赵世冉, 张凯峰, 焦国锋, 等. 硅酸盐通报, 2015, 34(S1), 308.
16 Ling T C, Poon C S. Cement and Concrete Composites, 2014, 53(10), 350.
17 Zhuang Z H, Zhou C Y, Yu Q J, et al. New Building Materials, 2007(08), 9 (in Chinese).
庄梓豪, 周春英, 余其俊, 等. 新型建筑材料, 2007(08), 9.
18 Lex R, Timothy W, Nicolas R, et al. Cement and Concrete Research, 2018, 112, 86.
19 Mohan M K, Rahul A V, Tittelboom K V, et al. Cement and Concrete Research, 2021, 139, 106258.
20 Choi M, Roussel N, Kim Y, et al. Cement and Concrete Research, 2013, 45, 69.
21 Kwon S H, Jang K P, Kim J H, et al. International Journal of Concrete Structures and Materials, 2016, 10(3), 75.
22 Xia Y X. The preparation and properties on alkali-activated cementitious material for 3D printing. Master’s Thesis, Chongqing University. China, 2019 (in Chinese).
夏雨欣. 3D打印碱激发胶凝材料的制备及性能研究. 硕士学位论文, 重庆大学, 2019.
23 Wang Q, Li M Y, Shi M X. Journal of the Chinese Ceramic Society, 2014, 42(05), 629 (in Chinese).
王强, 黎梦圆, 石梦晓. 硅酸盐学报, 2014, 42(05), 629.
24 Roussel N, Ovarlez G, Garrault S, et al. Cement and Concrete Research, 2012, 42(1), 148.
25 Plank J, Hirsch C. Cement and Concrete Research, 2007, 37(4), 537.
26 Duan Y H, Zhu L L, Zhao Y, et al. Science Technology and Enginee-ring, 2021, 21(15), 6416 (in Chinese).
段懿航, 朱伶俐, 赵宇, 等. 科学技术与工程, 2021, 21(15), 6416.
27 Wu F, Yang F G, Xiao B L, et al. Materials Reports, 2021, 35(03), 3021 (in Chinese).
吴凡, 杨发光, 肖柏林, 等. 材料导报, 2021, 35(03), 3021.
28 Romagnoli M, Sassatelli P, Gualtieri M L, et al. Construction and Buil-ding Materials, 2014, 65, 526.
29 Romagnoli M, Leonelli C, Kamse E, et al. Construction and Building Materials, 2012, 36, 251.
30 Wang D M, Zhang L R, Zhang W L, et al. Journal of Building Materials, 2012, 15(06), 755 (in Chinese).
王栋民, 张力冉, 张伟利, 等. 建筑材料学报, 2012, 15(06), 755.
31 Vikan H, Justnes H. Cement and Concrete Research, 2007, 37(11), 1512.
32 Kong F L, Liu Z, Zhang J J, et al. Journal of Chinese Electron Microscopy Society, 2016, 35(03), 229 (in Chinese).
孔凡龙, 刘泽, 张俱嘉, 等. 电子显微学报, 2016, 35(03), 229.
33 Liu H X, Zhan Z F, Zeng J J, et al. Journal of Guangzhou University(Natural Science Edition), 2018, 17(04), 66 (in Chinese).
刘慧娴, 詹镇峰, 曾俊杰, 等. 广州大学学报(自然科学版), 2018, 17(04), 66.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
[3] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[4] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[5] 郑家桢, 裴海华, 张贵才, 单景玲, 蒋平. 改性纳米硅颗粒强化高温泡沫的性能及机理研究[J]. 材料导报, 2023, 37(7): 21100066-5.
[6] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[7] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[8] 徐玲琳, 欧阳军, 杨肯, 徐名凤, 周健. 养护温度对矿渣硫铝酸盐水泥水化的影响机理[J]. 材料导报, 2023, 37(11): 21100065-5.
[9] 王剑锋, 常磊, 王艳, 刘辉, 岳德钰, 崔素萍, 兰明章. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 21100032-9.
[10] 柳力, 朱晓明, 刘朝晖, 李文博, 杨程程, 黄优, 刘磊鑫. 钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J]. 材料导报, 2023, 37(10): 22080175-7.
[11] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[12] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[13] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[14] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[15] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed