Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21090189-9    https://doi.org/10.11896/cldb.21090189
  无机非金属及其复合材料 |
碳纳米流体提高原油采收率室内研究进展与展望
于洪江*, 高明慧, 张美画, 常紫汐, 赵锡麟, 杜春保*
西安石油大学化学化工学院,西安 710065
Research Progress and Prospect of Carbon Nanofluids for Enhanced Oil Recovery in Laboratory
YU Hongjiang*, GAO Minghui, ZHANG Meihua, CHANG Zixi, ZHAO Xilin, DU Chunbao*
College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
下载:  全 文 ( PDF ) ( 14203KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着油田开采的不断深入,提高原油采收率面临着更大的困难和挑战,特别是在驱油体系的耐温抗盐能力和不可入孔隙体积等方面还存在较突出的问题。碳纳米流体是由碳纳米材料和溶剂(通常是水)组成的一种高效的工作介质,具有使储油孔喉发生润湿性反转、降低油水界面张力、形成分离压力和降低原油粘度等作用,在提高原油采收率中展现了巨大的应用潜力。国内外学者针对这一方向开展了深入的研究,并取得了一系列重要的成果,使碳纳米流体提高原油采收率成为原油开采的热点并有望在未来得到迅速发展。本文介绍了碳纳米流体的驱油机理,重点总结了碳量子点、碳纳米管、石墨烯以及氧化石墨烯等碳纳米材料所构建的碳纳米流体在提高原油采收率中的应用进展,并对其未来的研究趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于洪江
高明慧
张美画
常紫汐
赵锡麟
杜春保
关键词:  碳纳米材料  碳纳米流体  原油开采  提高原油采收率    
Abstract: With the development of oil extraction, enhanced oil recovery still has obstacles and difficulties, especially in the temperature resistance, salt tolerance, and impermeable pore volume of the oil displacement system. As an effective working medium composed of carbon nanomate-rials and solvent (e.g water), carbon nanofluid could cause the wettability reversal of oil storage pore throat, reduce oil-water interfacial tension, form separation pressure, and decrease crude oil viscosity, showing great potential for application in enhanced oil recovery. In recent years, considerable progress has been made in this area. As a result, carbon nanofluid has emerged as a research hotspot in oil extraction and is planned to get quick advancement in the future. Herein, the oil displacement mechanism of carbon nanofluids is described, and the applications of carbon nanofluids are constructed from carbon quantum dots, carbon nanotubes, graphene, and graphene oxide in enhanced oil recovery are summarized. Finally, the challenges for the future development of carbon nanofluids are also briefly proposed.
Key words:  carbon nanomaterial    carbon nanofluid    oil extraction    enhanced oil recovery
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TE327  
基金资助: 国家自然科学基金(22002117);陕西省自然科学基础研究计划(2021JQ-585);西安石油大学研究生创新与实践能力培养计划(YCS19213131)
通讯作者:  *于洪江,2000年毕业于西北大学获得硕士学位。现为西安石油大学化学化工学院教授。主要从事油田化学品开发与应用研究。发表学术论文30余篇,出版专著1部,授权国家专利2项。yhjhx@xsyu.edu.cn
杜春保,2017年毕业于西北工业大学获得博士学位。现为西安石油大学化学化工学院讲师。主要从事纳米材料的控制合成与应用研究。发表学术论文30余篇,出版专著1部,授权国家专利2项。duchunbao@xsyu.edu.cn   
引用本文:    
于洪江, 高明慧, 张美画, 常紫汐, 赵锡麟, 杜春保. 碳纳米流体提高原油采收率室内研究进展与展望[J]. 材料导报, 2023, 37(17): 21090189-9.
YU Hongjiang, GAO Minghui, ZHANG Meihua, CHANG Zixi, ZHAO Xilin, DU Chunbao. Research Progress and Prospect of Carbon Nanofluids for Enhanced Oil Recovery in Laboratory. Materials Reports, 2023, 37(17): 21090189-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090189  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21090189
1 Zuta J, Fjelde I. In:SPE Enhanced Oil Recovery Conference. Kuala Lumpur, 2011, pp. 144807.
2 Austad T. Enhanced Oil Recovery Field Case Studies, 2013, 13, 301.
3 Lashari N, Ganat T. Chinese Journal of Chemical Engineering, 2020, 28(8), 1995.
4 Li Y C, Bao X N, Zhang W D, et al. Fine Chemicals, 2020, 37(4), 649 (in Chinese).
李应成, 鲍新宁, 张卫东, 等. 精细化工, 2020, 37(4), 649.
5 Pei H H, Shan J L, Cao X, et al. Material Reports, 2021, 35(13), 13227 (in Chinese).
裴海华, 单景玲, 曹旭, 等. 材料导报, 2021, 35(13), 13227.
6 Lai N J, Dong W, Ye Z B, et al. Journal of Applied Polymer Science, 2013, 129(4), 1888.
7 Amani H, Müller M M, Syldatk C, et al. Applied Biochemistry & Biotechnology, 2013, 170(5), 1080.
8 Ding B, Xiong C M, Geng X F, et al. Petroleum Exploration and Deve-lopment, 2020, 47(4), 756 (in Chinese).
丁彬, 熊春明, 耿向飞, 等. 石油勘探与开发, 2020, 47(4), 756.
9 Hou J R, Wen Y C, Qu M, et al. Special Oil & Gas Reservoirs, 2020, 27(6), 47 (in Chinese).
侯吉瑞, 闻宇晨, 屈鸣, 等. 特种油气藏, 2020, 27(6), 47.
10 Zhang L, Zhang G C, Jiang P, et al. Material Reports, 2015, 29(13), 72 (in Chinese).
张磊, 张贵才, 蒋平, 等. 材料导报, 2015, 29(13), 72.
11 Kroto H W, Heath J R, Obrien S C, et al. Nature, 1985, 318(6042), 162.
12 Iijima S. Nature, 1991, 354(6348), 56.
13 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
14 Li G X, Li Y L, Liu H B, et al. Chemical Communications, 2010, 46(19), 3256.
15 Li Y, Ao L Y, Wang Q, et al. Rare Metal Materials & Engineering, 2019, 48(7), 2208.
16 Wang K, Li Z H. Food & Machinery, 2016, 32(3), 217.
17 Huang Y X, Zhao T, He J X. Food Science & Technology, 2019, 44(1), 355.
18 Zhong L H, Zhang H. Packaging Engineering, 2019, 40(23), 94.
19 Panwar N, Soehartono A, Chan K K, et al. Chemical Reviews, 2019, 119(16), 9559.
20 Marta E P. Current Medicinal Chemistry, 2019, 26(38), 6832.
21 Negri V, Jesús P, Calle D, et al. Topics in Current Chemistry, 2020, 378(1), 177.
22 Liu W J, Jiang H, Yu H Q. Energy & Environmental Science, 2019, 12(6), 1751.
23 Mohammed H A. Nanotechnology, 2019, 30(6), 062001.
24 Selvaraj M, Hai A, Banat F, et al. Journal of Water Process Enginee-ring, 2019, 33, 100996.
25 Wang S. Carbon Energy, 2019, 1(1), 4.
26 Sinan S H, Hussain H, Ali S. Journal of Molecular Liquids, 2020, 310, 113076.
27 Luo D, Wang F, Zhu J Y, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28), 7711.
28 Baragaua I A, Lu Z, Powerb N P, et al. Chemical Engineering Journal, 2020, 405(1), 126631.
29 Li Y, Di Q F, Hua S, et al. Chemical Industry and Engineering Progress, 2019, 38(8), 3612 (in Chinese).
李原, 狄勤丰, 华帅, 等. 化工进展, 2019, 38(8), 3612.
30 Mohammed M, Tayfun B. Advances in Colloid & Interface Science, 2015, 220, 54.
31 Ali K, Zahra F, Alireza B, et al. Energy & Fuels, 2012, 26(1), 1028.
32 Monfared A D, Ghazanfari M H, Jamialahmadi M, et al. Energy & Fuels, 2016, 30(5), 3947.
33 Yu H J, Lei L, Liu Y. Applied Chemical Industry, 2013, 42(1), 93 (in Chinese).
于洪江, 雷亮, 刘玉. 应用化工, 2013, 42(1), 93.
34 Afzalitabar M, Alaei M, Ranjineh K R, et al. Journal of Solid State Chemistry, 2017, 245, 164.
35 Mahsan A, Alimorad R, Mahshad A, et al. Journal of Molecular Liquids, 2020, 307, 112984.
36 Olajire A A. Energy, 2014, 77, 963.
37 Kurnia I, Zhang G Y, Han X, et al. Fuel, 2020, 259, 116236.
38 Nowrouzi I, Khaksar M A, Mohammadi A H. Journal of Molecular Structure, 2020, 1200, 127078.
39 Luo D, Wang F, Zhu J Y, et al. Industrial & Engineering Chemistry Research, 2017, 56(39), 11125.
40 Chen L F, Zhu X M, Wang L, et al. Energy & Fuels, 2018, 32(11), 11269.
41 Vu T V, Papavassiliou D V. Journal of Physical Chemistry C, 2018, 122(48), 27734.
42 Chen C L, Wang S S, Kadhum M, et al. Fuel, 2018, 222(15), 561.
43 Stefanía B, Francisco C M, Agustín F P, et al. Energy & Fuels, 2019, 33(5), 4158.
44 Shamsijazeyi H, Miller C A, Wong M S, et al. Journal of Applied Polymer Science, 2014, 131(15), 4401.
45 Moghaddam R N, Bahramian A, Fakhroueian Z, et al. Energy & Fuels, 2015, 29(4), 2111.
46 Wasan D T, Nikolov A D. Nature, 2003, 423(6936), 156.
47 Chengara A, Nikolov A D, Wasan D T, et al. Journal of Colloid & Interface Science, 2004, 280(1), 192.
48 Li Y Y, Dai C L, Zhou H D, et al. Industrial & Engineering Chemistry Research, 2017, 56(44), 12464.
49 Zhao M W, Song X G, Lv W J, et al. Journal of Molecular Liquids, 2020, 313, 113564.
50 Peng B L, Zhang L C, Luo J H, et al. RSC Advances, 2017, 7(51), 32246.
51 Xu Z X, Li Z M, Jing A W, et al. Energy & Fuels, 2019, 33(10), 9585.
52 Afzalitabar M, Alaei M, Bazmi M, et al. Fuel, 2017, 206(15), 453.
53 Maje A H, Ehsan N, Hu Z L, et al. Energy & Fuels, 2019, 33(2), 1637.
54 Phitsini S, Suejit P. Sensors, 2017, 17(10), 2161.
55 Mehdi B, Saeed H. Energy Conversion & Management, 2019, 196, 1222.
56 Xu X Y, Ray R, Gu Y L, et al. Journal of the American Chemical Society, 2015, 126(40), 12736.
57 Yue X Y, Zhou Z J, Wu Y M, et al. Chinese Journal of Analytical Che-mistry, 2020, 48(10), 1288.
58 Amirhossein A, Omid S, Nima T R, et al. Materials Science and Engineering C, 2021, 120, 111756.
59 Sivabalan S, Abdulrauf A, Mazen Y K. Energy & Fuels, 2019, 33(10), 9629.
60 Mazen K, Sivabalan S, Emmanuel G. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 598, 124819.
61 Seyed H H, Hamed A, Mina K A, et al. Journal of Petroleum Science and Engineering, 2019, 186, 106783.
62 Alnarabiji M S, Yahya N, Shafie A, et al. Procedia Engineering, 2016, 148, 1137.
63 Hassan S, Mirza K B, Noorhana Y, et al. Results in Physics, 2018, 9, 39.
64 Du C B, Hu X L, Zhang G, et al. Acta Physico-Chimica Sinica, 2019, 35(10), 1078 (in Chinese).
杜春保, 胡小玲, 张刚, 等. 物理化学学报, 2019, 35(10), 1078.
65 Du C B, Han B X. Acta Physico-Chimica Sinica, 2019, 35(10), 1045 (in Chinese).
杜春保, 韩布兴. 物理化学学报, 2019, 35(10), 1045.
66 Dimiev A M, Alemany L B, Tour J M. ACS Nano, 2013, 7(1), 576.
67 Hamideh R, Alimorad R, Solaimany N A R, et al. Journal of Molecular Liquids, 2018, 271, 795.
68 Sanaz T, Abbas S, Alimorad R, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 556, 253.
69 Amin R N, Alimorad R, Ali A G, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 581, 123801.
70 Ehsan J, Ehsan K, Farhad S, et al. Energy Sources Part A Recovery Utilization and Environmental Effects, 2020, 39, 1.
71 Du C B, Du T, Zhou J T, et al. Nanomaterials, 2022, 12, 1181.
72 Mehdi B, Saeed H. Energy Conversion and Management, 2019, 196, 1222.
73 Kim J, Cote L J, Kim F, et al. Journal of the American Chemical Society, 2010, 132(23), 8180.
74 Wu H, Yi W Y, Chen Z, et al. Carbon, 2015, 93, 473.
75 Luo D, Wang F, Vu B V, et al. Carbon, 2018, 126, 105.
76 Hamideh R, Ali R S N, Alimorad R. Journal of Petroleum Science & Engineering, 2019, 175, 868.
77 Ehsan A, Soheil S, Amir R M, et al. Fuel, 2019, 256, 116918.
78 Ehsan J, Ehsan K, Farhad S, et al. Journal of Petroleum Science and Engineering, 2020, 195, 107602.
79 Zhang B J, Rane K, Goual L. Carbon, 2020, 170, 439.
80 Han J, Huang P, Han Y G, et al. Journal of Molecular Liquids, 2020, 314, 113791.
[1] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[2] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[3] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[4] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[5] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[6] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[7] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[8] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[9] 赵吉鑫,乔玉林. 液相脉冲激光轰击石墨制备碳纳米材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 32-37.
[10] 郑静, 陈琳, 张欢, 杨永珍, 刘旭光. 有序介孔碳纳米材料的合成及载药系统构建研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 151-157.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed