Abstract: With the development of oil extraction, enhanced oil recovery still has obstacles and difficulties, especially in the temperature resistance, salt tolerance, and impermeable pore volume of the oil displacement system. As an effective working medium composed of carbon nanomate-rials and solvent (e.g water), carbon nanofluid could cause the wettability reversal of oil storage pore throat, reduce oil-water interfacial tension, form separation pressure, and decrease crude oil viscosity, showing great potential for application in enhanced oil recovery. In recent years, considerable progress has been made in this area. As a result, carbon nanofluid has emerged as a research hotspot in oil extraction and is planned to get quick advancement in the future. Herein, the oil displacement mechanism of carbon nanofluids is described, and the applications of carbon nanofluids are constructed from carbon quantum dots, carbon nanotubes, graphene, and graphene oxide in enhanced oil recovery are summarized. Finally, the challenges for the future development of carbon nanofluids are also briefly proposed.
1 Zuta J, Fjelde I. In:SPE Enhanced Oil Recovery Conference. Kuala Lumpur, 2011, pp. 144807. 2 Austad T. Enhanced Oil Recovery Field Case Studies, 2013, 13, 301. 3 Lashari N, Ganat T. Chinese Journal of Chemical Engineering, 2020, 28(8), 1995. 4 Li Y C, Bao X N, Zhang W D, et al. Fine Chemicals, 2020, 37(4), 649 (in Chinese). 李应成, 鲍新宁, 张卫东, 等. 精细化工, 2020, 37(4), 649. 5 Pei H H, Shan J L, Cao X, et al. Material Reports, 2021, 35(13), 13227 (in Chinese). 裴海华, 单景玲, 曹旭, 等. 材料导报, 2021, 35(13), 13227. 6 Lai N J, Dong W, Ye Z B, et al. Journal of Applied Polymer Science, 2013, 129(4), 1888. 7 Amani H, Müller M M, Syldatk C, et al. Applied Biochemistry & Biotechnology, 2013, 170(5), 1080. 8 Ding B, Xiong C M, Geng X F, et al. Petroleum Exploration and Deve-lopment, 2020, 47(4), 756 (in Chinese). 丁彬, 熊春明, 耿向飞, 等. 石油勘探与开发, 2020, 47(4), 756. 9 Hou J R, Wen Y C, Qu M, et al. Special Oil & Gas Reservoirs, 2020, 27(6), 47 (in Chinese). 侯吉瑞, 闻宇晨, 屈鸣, 等. 特种油气藏, 2020, 27(6), 47. 10 Zhang L, Zhang G C, Jiang P, et al. Material Reports, 2015, 29(13), 72 (in Chinese). 张磊, 张贵才, 蒋平, 等. 材料导报, 2015, 29(13), 72. 11 Kroto H W, Heath J R, Obrien S C, et al. Nature, 1985, 318(6042), 162. 12 Iijima S. Nature, 1991, 354(6348), 56. 13 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666. 14 Li G X, Li Y L, Liu H B, et al. Chemical Communications, 2010, 46(19), 3256. 15 Li Y, Ao L Y, Wang Q, et al. Rare Metal Materials & Engineering, 2019, 48(7), 2208. 16 Wang K, Li Z H. Food & Machinery, 2016, 32(3), 217. 17 Huang Y X, Zhao T, He J X. Food Science & Technology, 2019, 44(1), 355. 18 Zhong L H, Zhang H. Packaging Engineering, 2019, 40(23), 94. 19 Panwar N, Soehartono A, Chan K K, et al. Chemical Reviews, 2019, 119(16), 9559. 20 Marta E P. Current Medicinal Chemistry, 2019, 26(38), 6832. 21 Negri V, Jesús P, Calle D, et al. Topics in Current Chemistry, 2020, 378(1), 177. 22 Liu W J, Jiang H, Yu H Q. Energy & Environmental Science, 2019, 12(6), 1751. 23 Mohammed H A. Nanotechnology, 2019, 30(6), 062001. 24 Selvaraj M, Hai A, Banat F, et al. Journal of Water Process Enginee-ring, 2019, 33, 100996. 25 Wang S. Carbon Energy, 2019, 1(1), 4. 26 Sinan S H, Hussain H, Ali S. Journal of Molecular Liquids, 2020, 310, 113076. 27 Luo D, Wang F, Zhu J Y, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28), 7711. 28 Baragaua I A, Lu Z, Powerb N P, et al. Chemical Engineering Journal, 2020, 405(1), 126631. 29 Li Y, Di Q F, Hua S, et al. Chemical Industry and Engineering Progress, 2019, 38(8), 3612 (in Chinese). 李原, 狄勤丰, 华帅, 等. 化工进展, 2019, 38(8), 3612. 30 Mohammed M, Tayfun B. Advances in Colloid & Interface Science, 2015, 220, 54. 31 Ali K, Zahra F, Alireza B, et al. Energy & Fuels, 2012, 26(1), 1028. 32 Monfared A D, Ghazanfari M H, Jamialahmadi M, et al. Energy & Fuels, 2016, 30(5), 3947. 33 Yu H J, Lei L, Liu Y. Applied Chemical Industry, 2013, 42(1), 93 (in Chinese). 于洪江, 雷亮, 刘玉. 应用化工, 2013, 42(1), 93. 34 Afzalitabar M, Alaei M, Ranjineh K R, et al. Journal of Solid State Chemistry, 2017, 245, 164. 35 Mahsan A, Alimorad R, Mahshad A, et al. Journal of Molecular Liquids, 2020, 307, 112984. 36 Olajire A A. Energy, 2014, 77, 963. 37 Kurnia I, Zhang G Y, Han X, et al. Fuel, 2020, 259, 116236. 38 Nowrouzi I, Khaksar M A, Mohammadi A H. Journal of Molecular Structure, 2020, 1200, 127078. 39 Luo D, Wang F, Zhu J Y, et al. Industrial & Engineering Chemistry Research, 2017, 56(39), 11125. 40 Chen L F, Zhu X M, Wang L, et al. Energy & Fuels, 2018, 32(11), 11269. 41 Vu T V, Papavassiliou D V. Journal of Physical Chemistry C, 2018, 122(48), 27734. 42 Chen C L, Wang S S, Kadhum M, et al. Fuel, 2018, 222(15), 561. 43 Stefanía B, Francisco C M, Agustín F P, et al. Energy & Fuels, 2019, 33(5), 4158. 44 Shamsijazeyi H, Miller C A, Wong M S, et al. Journal of Applied Polymer Science, 2014, 131(15), 4401. 45 Moghaddam R N, Bahramian A, Fakhroueian Z, et al. Energy & Fuels, 2015, 29(4), 2111. 46 Wasan D T, Nikolov A D. Nature, 2003, 423(6936), 156. 47 Chengara A, Nikolov A D, Wasan D T, et al. Journal of Colloid & Interface Science, 2004, 280(1), 192. 48 Li Y Y, Dai C L, Zhou H D, et al. Industrial & Engineering Chemistry Research, 2017, 56(44), 12464. 49 Zhao M W, Song X G, Lv W J, et al. Journal of Molecular Liquids, 2020, 313, 113564. 50 Peng B L, Zhang L C, Luo J H, et al. RSC Advances, 2017, 7(51), 32246. 51 Xu Z X, Li Z M, Jing A W, et al. Energy & Fuels, 2019, 33(10), 9585. 52 Afzalitabar M, Alaei M, Bazmi M, et al. Fuel, 2017, 206(15), 453. 53 Maje A H, Ehsan N, Hu Z L, et al. Energy & Fuels, 2019, 33(2), 1637. 54 Phitsini S, Suejit P. Sensors, 2017, 17(10), 2161. 55 Mehdi B, Saeed H. Energy Conversion & Management, 2019, 196, 1222. 56 Xu X Y, Ray R, Gu Y L, et al. Journal of the American Chemical Society, 2015, 126(40), 12736. 57 Yue X Y, Zhou Z J, Wu Y M, et al. Chinese Journal of Analytical Che-mistry, 2020, 48(10), 1288. 58 Amirhossein A, Omid S, Nima T R, et al. Materials Science and Engineering C, 2021, 120, 111756. 59 Sivabalan S, Abdulrauf A, Mazen Y K. Energy & Fuels, 2019, 33(10), 9629. 60 Mazen K, Sivabalan S, Emmanuel G. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 598, 124819. 61 Seyed H H, Hamed A, Mina K A, et al. Journal of Petroleum Science and Engineering, 2019, 186, 106783. 62 Alnarabiji M S, Yahya N, Shafie A, et al. Procedia Engineering, 2016, 148, 1137. 63 Hassan S, Mirza K B, Noorhana Y, et al. Results in Physics, 2018, 9, 39. 64 Du C B, Hu X L, Zhang G, et al. Acta Physico-Chimica Sinica, 2019, 35(10), 1078 (in Chinese). 杜春保, 胡小玲, 张刚, 等. 物理化学学报, 2019, 35(10), 1078. 65 Du C B, Han B X. Acta Physico-Chimica Sinica, 2019, 35(10), 1045 (in Chinese). 杜春保, 韩布兴. 物理化学学报, 2019, 35(10), 1045. 66 Dimiev A M, Alemany L B, Tour J M. ACS Nano, 2013, 7(1), 576. 67 Hamideh R, Alimorad R, Solaimany N A R, et al. Journal of Molecular Liquids, 2018, 271, 795. 68 Sanaz T, Abbas S, Alimorad R, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 556, 253. 69 Amin R N, Alimorad R, Ali A G, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 581, 123801. 70 Ehsan J, Ehsan K, Farhad S, et al. Energy Sources Part A Recovery Utilization and Environmental Effects, 2020, 39, 1. 71 Du C B, Du T, Zhou J T, et al. Nanomaterials, 2022, 12, 1181. 72 Mehdi B, Saeed H. Energy Conversion and Management, 2019, 196, 1222. 73 Kim J, Cote L J, Kim F, et al. Journal of the American Chemical Society, 2010, 132(23), 8180. 74 Wu H, Yi W Y, Chen Z, et al. Carbon, 2015, 93, 473. 75 Luo D, Wang F, Vu B V, et al. Carbon, 2018, 126, 105. 76 Hamideh R, Ali R S N, Alimorad R. Journal of Petroleum Science & Engineering, 2019, 175, 868. 77 Ehsan A, Soheil S, Amir R M, et al. Fuel, 2019, 256, 116918. 78 Ehsan J, Ehsan K, Farhad S, et al. Journal of Petroleum Science and Engineering, 2020, 195, 107602. 79 Zhang B J, Rane K, Goual L. Carbon, 2020, 170, 439. 80 Han J, Huang P, Han Y G, et al. Journal of Molecular Liquids, 2020, 314, 113791.