Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23076-23088    https://doi.org/10.11896/cldb.20070248
  无机非金属及其复合材料 |
电位滴定法在沥青研究中的应用及展望
王晓锋1, 梁波1,2, 陈玉凡1, 张宽宽1
1 长沙理工大学交通运输工程学院,长沙 410114
2 公路养护技术国家工程实验室,长沙410114
Application and Prospect of Potentiometric Titration in Asphalt Research
WANG Xiaofeng1, LIANG Bo1,2, CHEN Yufan1, ZHANG Kuankuan1
1 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114,China
2 National Engineering Laboratory of Highway Maintenance Technology, Changsha 410114,China
下载:  全 文 ( PDF ) ( 7520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青的组成影响沥青路面的性能。环境和荷载使沥青组分的含量和结构发生变化,导致沥青老化、变硬变脆且粘结性降低,从而降低沥青路面的使用寿命。沥青老化分析技术的发展对研究沥青材料的老化、沥青的改性和老化沥青的再生具有重要意义。当前,应用广泛的傅里叶红外光谱法、凝胶渗透色谱法、原子力显微镜法及荧光显微镜法等在沥青的老化研究中均存在一定局限性,因此,发展一种新的研究方法至关重要。电位滴定法利用已知物质的量浓度的滴定剂对待测溶液中未知浓度的物质进行滴定,溶液中离子浓度变化程度的不同导致指示电极电位显示不同的电势。滴定终点前后,待测物质浓度发生明显改变,电位发生突跃,可根据电位突变时滴定剂的消耗量计算待测物质含量。对于给定的化学官能团,电极电位的变化是唯一的,并且与其浓度成比例。在沥青的检测中,该方法测试结果不受温度、沥青黑色背景、液体接界电位等因素的干扰,因此测试结果具有较高的准确性,适用于沥青组分研究。本文综合国内外研究成果,从监控沥青的老化过程及指导老化沥青的再生角度,综述了电位滴定法在沥青酸碱组分检测与分类中的应用、沥青组分与性能的关系、含水量和硫含量以及苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性沥青中SBS含量检测方面的研究进展及其它电化学方法在沥青老化前后的物质检测中的研究现状。通过电位滴定法将沥青老化前后组分的变化与沥青的性能及老化沥青再生机理研究相结合,为沥青路面的耐久性研究提供科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓锋
梁波
陈玉凡
张宽宽
关键词:  道路工程  电位滴定  沥青组分  老化  再生  SBS含量    
Abstract: The composition of bitumen affects the performance of asphalt pavement. Environment and load cause the content and structure of asphalt components to change, which lead to the aging of asphalt, make it hard and brittle, and reduce the cohesiveness and the service life of asphalt pavement. The development of asphalt aging analysis technology is of great significance for the aging of asphalt materials, modification of asphalt and regeneration of aged asphalt. At present, fourier transform infrared spectroscopy, gel permeation chromatography, atomic force microscopy and fluorescence microscopy are widely used in asphalt aging research. However, they all have certain limitations, so it is important to develop a new research method. Potentiometric titration uses the titrant with known concentration to titrate the substances to be measured. The difference of ion concentration in the solution leads to different potential of indicator electrode potential. Before and after the end point of titration, the concentration of the substance to be measured changes significantly,which leads to a sudden potential jump. The content of the substance to be measured is calculated according to the consumption of titrant at the end point of titration. For a given chemical functional group, the change of electrode potential is unique and proportional to its concentration. Potentiometric titration is not affected by temperature, dark background, liquid junction potential and other factors of the sample to be tested. Therefore, potentiometric titration has high accuracy and is suitable for asphalt component research. In this paper, the applications of potentiometric titration in the detection and classification of acid-base components of asphalt, the study on the relationship between asphalt components and properties, and research progress in detection of moisture content, sulfur content, and the SBS content of styrene-butadiene-styrene block copolymer (SBS) modified asphalt are summarized from the perspective of monitoring the aging process of asphalt and guiding the regene-ration of aged asphalt. By potentiometric titration, the change of asphalt components before and after aging is combined with the study of asphalt properties and regeneration mechanism of aging asphalt, which provides a scientific basis for the design of durable asphalt pavement.
Key words:  road engineering    potentiometric titration    asphalt components    aging    regeneration    SBS content
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  U414  
  TB332  
基金资助: 湖南省重点研发计划(2016GK2096);湖南省交通运输厅科技进步与创新项目(202003);长沙市自然科学基金(kq2014106);公路养护技术国家工程实验室开放基金(KJF150101;KJF150104);长沙理工大学研究生科研创新项目(CX2021SS13)
通讯作者:  liangbo26@126.com   
作者简介:  王晓锋,2018年至今在长沙理工大学交通运输工程专业攻读硕士学位,在梁波教授的指导下从事路面材料的检测及性能研究。
梁波, 长沙理工大学交通运输工程学院教授, 硕士研究生导师。2006年6月在华南理工大学获得材料学博士学位。主要的研究工作包括:聚合物功能材料,沥青材料的制备及性能和路面材料的性能表征。已经发表了60多篇学术论文,其中SCI检索40多篇,授权发明专利10多项,专著1本。
引用本文:    
王晓锋, 梁波, 陈玉凡, 张宽宽. 电位滴定法在沥青研究中的应用及展望[J]. 材料导报, 2021, 35(23): 23076-23088.
WANG Xiaofeng, LIANG Bo, CHEN Yufan, ZHANG Kuankuan. Application and Prospect of Potentiometric Titration in Asphalt Research. Materials Reports, 2021, 35(23): 23076-23088.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070248  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23076
1 Huang Y, Bird R, Heidrich O. Journal of Cleaner Production, 2009, 17, 283.
2 Zhu J Y, He Z Y. Materials Reports, 2018, 32(5), 847(in Chinese).
朱建勇, 何兆益. 材料导报, 2018, 32(5), 847.
3 He L, Huang H D, Vandenbergh W, et al. Materials Reports A: Review Papers, 2020, 34(8), 15092(in Chinese).
何亮, 黄胡端, Vandenbergh W, 等. 材料导报:综述篇, 2020, 34(8), 15092.
4 Zaumanis M, Mallick R B, Frank R. Resources, Conservation and Recycling, 2014, 92, 230.
5 Kuang D L, Liu W C, Xiao Y, et al. Construction and Building Mate-rials, 2019, 223, 986.
6 Zhang R, You Z P, Wang H N, et al. Construction and Building Mate-rials, 2019, 196, 134.
7 Tabaković A, Gibney A, Mcnally C, et al. Journal of Materials in Civil Engineering, 2010, 22(6), 643.
8 Shen J N, Amirkhanian S, Lee S J. International Journal of Pavement Engineering, 2005, 6(4), 273.
9 Guo P, Xie F Z, Meng J W, et al. Materials Reports A: Review Papers, 2020, 34(7), 13100(in Chinese).
郭鹏, 谢凤章, 孟建玮, 等. 材料导报:综述篇, 2020, 34(7), 13100.
10 Chen G X. Asphalt four components separation test device and studies on their influence factors.Master's Thesis,Chang'an University,China,2014(in Chinese).
陈改霞. 沥青四组分分离试验装置及其影响因素研究.硕士学位论文, 长安大学, 2014.
11 Jiang C N, Larter S R, Noke K J, et al. Organic Geochemistry, 2008, 39(8), 1210.
12 SunD Q, Li B, Tian Y, et al. Construction and Building Materials, 2019, 201, 571.
13 Shu X, Huang B S, Vukosavljevic D. Construction and Building Mate-rials, 2008, 22(7), 1323.
14 Mogawer W, Bennert T, Daniel J S, et al. Road Materials and Pavement Design, 2012, 13(sup1), 183.
15 He G P, Wong W G. Construction and Building Materials, 2008, 22(1), 30.
16 Yang T Y, Chen M Z, Zhou X X, et al. Materials, 2018, 11(11), 2224.
17 Bissada K K, Tan J Q, Szymczyk E, et al. Organic Geochemistry, 2016, 95, 21.
18 Wang W X, Sun F, Wu C Q, et al. Analytical Instrumentation, 2018(3), 94 (in Chinese).
王文祥, 孙枫, 仵春祺, 等. 分析仪器, 2018(3), 94.
19 Buell B E. Analytical Chemistry, 1967, 39(7), 762.
20 Buell B E. Analytical Chemistry, 1967, 39(7), 756.
21 Dutta P K, Holland R J. Fuel, 1984, 63(2), 197.
22 Mohammad F M, Mohammad A A. Fuel Science & Technology Internatio-nal, 1988, 6(6), 663.
23 Branthaver J F, Petersen J, Robertson R, et al. Chromatography, 1993, 2,87.
24 Bukka K, Miller J, Hanson F, et al. Fuel, 1994, 73(2), 257.
25 Jada A, Salou M, Siffert B. Petroleum science and Technology, 2001, 19(1), 119.
26 Soenen H, Lu X H, Laukkanen O-V. Rheologica Acta, 2016,55(4), 315.
27 Plug C, De Bondt A, Roos H. In:5th European Asphalt Technology Association Conference.Germany, 2013,pp.1.
28 Bagampadde U, Isacsson U. Energy & Fuels, 2006, 20(5), 2174.
29 Yang L J, Zhao Z F, Gao S W. Journal of Shenyang University of Technology, 2008, 30(6), 679(in Chinese).
杨理践,赵志芳,高松巍.沈阳工业大学学报, 2008, 30(6), 679.
30 Liu Z Q, Bai Z S. Instrument Technique and Sensor, 2009(5), 126(in Chinese).
刘竹琴,白泽生. 仪表技术与传感器, 2009(5), 126.
31 Carbognani L, Roa-Fuentes L C, Diaz L, et al. Petroleum Science and Technology, 2014, 32(5), 602.
32 Carbognani L, Araghi B M, Berezinski J, et al. Petroleum Science and Technology, 2014, 32(5), 610.
33 Boysen R B, Farrar M J, Planche J P. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2444(1), 97.
34 Cheng G X, Shen B X, Li H B, et al. Journal of East China University of Science and Technology ( Natural Science Edition),2008, 34(3), 319(in Chinese).
程国香,沈本贤,李海彬,等. 华东理工大学学报(自然科学版), 2008, 34(3), 319.
35 Hao J H, Cheng G X, Shen B X. Journal of East China University of Science and Technology ( Natural Science Edition), 2008, 34(3), 324(in Chinese).
郝金辉, 程国香, 沈本贤. 华东理工大学学报(自然科学版), 2008, 34(3), 324.
36 Thomas K P, Mckay J F, Branthaver J F. Road materials and Pavement Design, 2006, 7(4), 477.
37 Liu Z C, Niu Y F, Xiao J Y, et al. Journal of Central South University (Science and Technology),2015, 46(6), 2221(in Chinese).
刘正春, 牛艳芳, 肖嘉莹,等.中南大学学报(自然科学版), 2015, 46(6), 2221.
38 Sun Q J,Jin Y C,Che C W. Journal of Highway and Transportation Research and Development,2013, 30(2),44(in Chinese).
孙秋健, 金佑成, 车淳万. 公路交通科技, 2013, 30(2),44.
39 Niu Y F, Zhu Z Q, Xiao J Y, et al. Construction and Building Materials, 2016, 107,38(in Chinese).
40 Feng X J, Zhao M L, Tang X, et al. Journal of Chang'an University(Natural Science Edition), 2019, 39(1), 44(in Chinese).
冯新军, 赵梦龙, 唐雄, 等.长安大学学报(自然科学版), 2019, 39(1),44.
41 Luo S, Tian J H, Liu Z M, et al. Measurement, 2020, 151,107204.
42 Geng J G,Yuan J A,Wang Q. Applied Chemical Industry, 2013, 42(9),1706(in Chinese).
耿九光, 原健安, 王乾. 应用化工, 2013, 42(9), 1706.
43 Yi P,Gu X Y. Highway, 2019(4),270(in Chinese).
尹萍, 顾晓燕. 公路, 2019(4),270.
44 Zhang D X, Zhao W W, Zhang Z H, et al. Highway Engineering, 2014, 39(4),73(in Chinese).
张东兴, 赵威为, 章照宏, 等. 公路工程, 2014, 39(4), 73.
45 Sun N Y, Wang D M, Sun Y Z, et al. Modern Chemical Industry, 2015, 35(10), 179(in Chinese).
孙宁悦, 王大明, 孙延忠, 等.现代化工, 2015, 35(10),179.
46 Liang B, Shi K, Niu Y F, et al. Construction and Building Materials, 2020, 234, 117385.
47 Masson J F, Collins P, Robertson G P, et al. Energy & Fuels, 2003, 17(3),714.
48 Lu X H, Isacsson U, Ekblad J. Journal of Materials in Civil Engineering, 1999, 11(1),51.
49 Lesueur D. Advances in Colloid Interface Science, 2009, 145, 42.
50 Flik M I, Zhang Z M. Journal of Quantitative Spectroscopy and Radiative Transfer, 1992, 47(4), 293.
51 Hou X, Lv S, Chen Z, et al. Measurement, 2018, 121,304.
52 Ye W L, Jiang W, Li P F, et al. Construction and Building Materials, 2019, 215,823.
53 Pauli A, Branthaver J, Robertson R, et al. American Chemical Society,Division of Petroleum Chemistry, 2001, 46(2),104.
54 Kang A H, Zhang W H, Sun L J. Journal of Sichuan University ( Engineering Science Edition), 2012, 44(2),154(in Chinese).
康爱红, 张吴红, 孙立军. 四川大学学报(工程科学版), 2012, 44(2), 154.
55 Wu S P, Zhao Z J, Xiao Y, et al. Construction and Building Materials, 2017, 155,1158.
56 Feng Z G, Bian H J, Li X J, et al. Materials and Structures, 2016, 49,1381.
57 Luo S, Li X, Tian J H, et al. Journal of Chang'an University(Natural Science Edition), 2019, 39(3),10(in Chinese).
罗桑, 李想, 田佳昊, 等. 长安大学学报(自然科学版), 2019, 39(3),10.
58 Wang C, Wang Y. Construction and Building Materials, 2019, 199,471.
59 Sun D Q, Yu F, Li L H, et al. Construction and Building Materials, 2017, 133, 495.
60 Ma F, Fu Z, Luan Y Y. Journal of Functional Materials , 2014, 45(23),23065(in Chinese).
马峰, 傅珍, 栾媛媛. 功能材料, 2014, 45(23), 23065.
61 Wu S P, Pang L, Mo L T, et al. Construction Building Materials, 2009, 23, 1005.
62 Soenen H, Besamusca J, Fischer H, et al. Materials and Structures, 2014, 47,1205.
63 Zhang M Y, Hao P W, Dong S, et al. Measurement, 2020, 151, 107255.
64 Zhang D M, Zhang H L, Shi C J. Construction Building Materials, 2017, 145, 445.
65 Bulatović V O, Rek V, Marković K J. Polymer Engineering and Science, 2013, 53(11), 2276.
66 Bearsley S, Haverkamp R. Road Materials and Pavement Design, 2007, 8(3),467.
67 Redelius P G. Fuel, 2000, 79, 27.
68 Li J, Huang X S, Zhang Y Z, et al. Road Materials and Pavement Design, 2009, 10(sup1),45.
69 Wang T, Huang X S, Zhang Y Z. Journal of Materials in Civil Enginee-ring, 2010, 22(8), 773.
70 Sreeram A, Leng Z, Hajj R, et al. Fuel, 2019, 254,115578.
71 Doménech-Carbó A, Da Silveira G D, Medina-Alcaide M Á, et al. Electrochemistry Communications, 2018, 87,18.
72 Cocchi V, Guadagnini L, Mignani A, et al. Electrochimica Acta, 2011, 56,6976.
73 Braunger M L, Barros A, Ferreira M, et al. Electrochimica Acta, 2015, 165,1.
74 da Silveira G D, de Carvalho L M, Montoya N, et al. Electrochimica Acta, 2018, 270,461.
75 Schmidt P, Goularte R B, Cargnin R S, et al. Journal of Solid State Electrochemistry, 2020, 24(11),2923.
[1] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[2] 郝培文, 李万军, 韩钰祥, 苏纪壮, 乐宸. 基于OT试验的乳化沥青冷再生面层混合料抗反射裂缝性能研究[J]. 材料导报, 2021, 35(z2): 150-157.
[3] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[4] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[5] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[6] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[7] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[8] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[9] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[10] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[11] 熊亚, 江猛, 李宜航, 吴江兵, 杨航, 熊玉竹. 白炭黑负载抗氧剂在天然橡胶中的分散性及防老化作用[J]. 材料导报, 2021, 35(6): 6200-6205.
[12] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
[13] 邹在平, 吴悦梅, 赵秀丽. 聚碳酸酯耐溶剂性能研究进展[J]. 材料导报, 2021, 35(5): 5199-5205.
[14] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[15] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed