Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22065-22069    https://doi.org/10.11896/cldb.19110228
  无机非金属及其复合材料 |
饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响
徐彬彬1, 欧忠文1,2, 罗伟1, 刘娜1, 袁旺1, 付来平1
1 中国人民解放军陆军勤务学院军事设施系,重庆 400030
2 四川轻化工大学材料科学与工程学院,自贡 643000
Effect of Saturated Lightweight Aggregate and SRA on the Hydration Process and Autogenous Shrinkage of UHPC
XU Binbin1, OU Zhongwen1,2, LUO Wei1, LIU Na1, YUAN Wang1, FU Laiping1
1 Department of Military Infrastructure, Army Logistics University of PLA, Chongqing 400030, China
2 College of Material Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
下载:  全 文 ( PDF ) ( 4008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过测试超高性能混凝土(UHPC)的凝结时间、抗压强度、水化热、自收缩和相对湿度,研究了饱水轻骨料、减缩剂(SRA)和两者综合作用对UHPC水化过程和自收缩的影响。结果表明:饱水轻骨料和SRA都可降低UHPC自收缩,当轻骨料掺量为50%时,自收缩显著降低,为基准组的7.2%,其原因为内养护水在4 d内缓慢释放,缓解自干燥效应,这说明内养护是降低自收缩十分有效的方式,但UHPC的力学性能显著降低。同时发现低掺量轻骨料和SRA对抑制UHPC自收缩发挥着协同效应,并且轻骨料的多孔结构对SRA存在着一定的吸附效应,可降低初期孔溶液中SRA的有效含量,共同维持内部相对湿度以减小自收缩,同时缓解对早期强度和水化过程的不利影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐彬彬
欧忠文
罗伟
刘娜
袁旺
付来平
关键词:  超高性能混凝土(UHPC)  饱水轻骨料  减缩剂(SRA)  水化过程  自收缩    
Abstract: This paper investigated the influence of saturated lightweight aggregate, shrinkage reducing agent (SRA) and the combined effects of both on the hydration process and autogenous shrinkage of ultra-high performance concrete (UHPC) by testing the setting time, compressive strength, hydration heat autogenous shrinkage and relative humidity. The results showed that saturated lightweight aggregate and SRA can reduce autogenous shrinkage of UHPC. At 50% replacement of lightweight aggregate, the autogenous shrinkage decreased significantly, 7.2% of the reference. The reason can be ascribed to the fact that the internal curing water slowly released in 4 d, mitigating the self-desiccation effect, which indicated that internal curing was effective in reducing autogenous shrinkage of UHPC, but bad for its mechanical properties. Simultaneously, lightweight aggregate at lower replacement together with SRA exert an comprehensive effect on restriction of autogenous shrinkage of UHPC. The porous structure of lightweight aggregate produce certain adsorption effect of SRA, reducing its effective content in initial pore solution, maintaining the internal relative humidity to decrease autogenous shrinkage, and mitigating the adverse impact on the early strength and the hydration process.
Key words:  ultra-high performance concrete (UHPC)    saturated lightweight aggregate    shrinkage reducing agent (SRA)    hydration process    autogenous shrinkage
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TU528  
基金资助: 军队后勤科研计划项目(BLJ17J008)
通讯作者:  ouzhongwen@sina.com   
作者简介:  徐彬彬,现为陆军勤务学院材料工程专业硕士研究生,主要从事超高性能混凝土自收缩控制领域的研究。欧忠文,2003年毕业重庆大学,获得工学博士学位。现为陆军勤务学院土木工程学科博士研究生导师,任教育部土木工程材料教指委委员,中国表面工程协会科技委副主任,《表面技术》《材料保护》等期刊编委或副主任编委。主持或主研国家重大基础研究计划项目、国家科技重点专项、国家自然科学基金等30余项;发表论文100多篇;授权发明专利23项。现主要从事土木工程材料的教学与科研。
引用本文:    
徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
XU Binbin, OU Zhongwen, LUO Wei, LIU Na, YUAN Wang, FU Laiping. Effect of Saturated Lightweight Aggregate and SRA on the Hydration Process and Autogenous Shrinkage of UHPC. Materials Reports, 2020, 34(22): 22065-22069.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110228  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22065
1 Zhang X, Liu Z, Wang F. Construction and Building Materials, 2019,226,459.2 Xie T, Fang C, Ali M M, et al. Cement and Concrete Composites, 2018,91,156.3 Wang J, Bian C, Xiao R, et al. KSCE Journal of Civil Engineering, 2019,23(10),4481.4 Yang L, Shi C, Wu Z. Composites Part B: Engineering, 2019,178,107456.5 Wehbe Y. Construction and Building Materials, 2017,138,151.6 Wei Y, Zhang Q Q, Xiang Y P. Journal of Building Materials, 2014,17(6),1054(in Chinese).魏亚, 张倩倩, 向亚平.建筑材料学报, 2014,17(6),1054.7 Mo J, Ou Z, Zhao X, et al. Construction and Building Materials, 2017,146,283.8 De Sensale G R I G, Goncalves A F. International Journal of Concrete Structures and Materials, 2014,8(3),229.9 Rajabipour F, Sant G, Weiss J. Cement and Concrete Research, 2008,38(5),606.10 Zhang Z, Xu L, Tang M. Journal of the Chinese Ceramic Society, 2009,37(7),1244.11 Yoo D, Kim J, Zi G, et al. Construction and Building Materials, 2015,89,67.12 Folliard K J, Berke N S. Cement and Concrete Research, 1997,27(9),1357.13 Dang Y, Qian J, Qiao D, et al. Journal of the Chinese Ceramic Society, 2011, 39(1),47(in Chinese).党玉栋, 钱觉时, 乔墩, 等.硅酸盐学报, 2011,39(1),47.14 Justs J, Wyrzykowski M, Bajare D, et al. Cement and Concrete Research, 2015,76,82.15 Zuo W Q, Tian Q, Ran Q P, et al. Journal of Building Materials, 2016, 19(3), 503(in Chinese).左文强, 田倩, 冉千平, 等.建筑材料学报, 2016,19(3),503.16 Sant G,Lothenbach B,Juilland P,et al.Cement and Concrete Research,2011,41(3),218.
[1] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[2] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[3] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[4] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[5] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed