Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22120129-8    https://doi.org/10.11896/cldb.22120129
  高分子与聚合物基复合材料 |
地下水低渗透区重非水相液体(DNAPL)的增渗增移技术综述
黄霄伊1, 代朝猛1,*, 游学极1, 李思1, 童汪凯1, 李继香2
1 同济大学土木工程学院,上海 200092
2 中国科学院上海高等研究院,上海 200120
Enhancing the Permeability and Migration of DNAPL in Low-permeability Zones of Groundwater: a Technological Review
HUANG Xiaoyi1, DAI Chaomeng1,*, YOU Xueji1, LI Si1, TONG Wangkai1, LI Jixiang2
1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
下载:  全 文 ( PDF ) ( 5957KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 重非水相液体(DNAPL)是一种物化性质稳定且毒性较强的有机污染物,对人类健康和生态环境存在极大威胁。由于其密度较大、穿透性强,DNAPL渗入地下后易在低渗透区积聚,形成长期污染源。低渗透区流速慢、传质难的特点使得常用地下水污染修复技术难以奏效,而目前针对该问题的系统性研究尚显不足,因此亟需梳理并总结通过增渗增移DNAPL实现低渗透区污染增效修复的方法,为后续研究提供一定参考价值。本文首先通过控制方程描述了增渗增移的原理;其次综述了两种分别以表面活性剂和电动为核心的增渗增移方法:表面活性剂通过胶束增溶和降低吸附实现增渗增移,电动则通过电渗和电迁移增移DNAPL;同时介绍了实际应用中耦合其他技术的案例,总结优缺点;最后对DNAPL未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄霄伊
代朝猛
游学极
李思
童汪凯
李继香
关键词:  重非水相液体(DNAPL)  低渗透区  增渗增移  表面活性剂  电动    
Abstract: Dense non-aqueous phase liquids (DNAPL) is a kind of organic pollutant with stable physicochemical properties and strong toxicity, which poses a great threat to human health and the ecological environment. Due to its high density and strong penetration, DNAPL tends to accumulate in low-permeability zones, forming a long-term source of pollution. The slow flow rate and difficult mass transfer in low-permeability zones make frequently-used remediation methods ineffective, whereas the systematic research focusing on this issue is insufficient. Therefore, it is urgent to summarize the methods of enhancing permeability and migration of DNAPL which are aimed to promote pollutant remediation in low-permeability zones, so that it can serve as the reference for subsequent research. In this paper, firstly, the principle of aforementioned enhancement was delineated through the governing equation. Secondly, mechanisms underlying two methods of enhancing permeability and migration of DNAPL respectively based on surfactants and electrokinetics were summarized: surfactants enhance permeability and migration by micelle solubilizing and reducing adsorption, while electrokinetics enhances migration by electroosmotic flow and electromigration. Additionally, cases using coupling methodologies in practical applications and their effectiveness and feasibility were described. Finally, the future development direction was prospected.
Key words:  dense non-aqueous phase liquids (DNAPL)    low-permeability zones    enhancing permeability and migration    surfactant    electrokinetics
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  X523  
基金资助: 国家重点研发计划(2019YFE0114900);上海市扬帆计划(22YF1450200);国家自然科学基金(42077175;52270164)
通讯作者:  *代朝猛,同济大学土木学院研究员、博士研究生导师。2007年于郑州大学获得硕士学位,2011年获得同济大学和德国柏林工业大学博士学位。主要研究方向为地下水安全保障理论与技术、新型环境功能材料在地下水安全修复中的应用、地下水中污染物迁移转化规律及模拟。近年在国内外核心期刊上发表论文100余篇,主编专著2部,授权国家专利20余项。   
作者简介:  黄霄伊,2022年6月于河海大学获得工学学士学位。现为同济大学土木工程学院硕士研究生,在代朝猛教授的指导下进行研究。目前主要研究方向为地下水低渗透区重非水相液体的增渗增移。
引用本文:    
黄霄伊, 代朝猛, 游学极, 李思, 童汪凯, 李继香. 地下水低渗透区重非水相液体(DNAPL)的增渗增移技术综述[J]. 材料导报, 2024, 38(6): 22120129-8.
HUANG Xiaoyi, DAI Chaomeng, YOU Xueji, LI Si, TONG Wangkai, LI Jixiang. Enhancing the Permeability and Migration of DNAPL in Low-permeability Zones of Groundwater: a Technological Review. Materials Reports, 2024, 38(6): 22120129-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120129  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22120129
1 Fu Y F. Study on solubilization and mobilization based remediation of DNAPL contaminated aquifer by surfactants and their compounding systems. Master's Thesis, Jilin University, China, 2020 (in Chinese).
付玉丰. 表面活性剂及其复配体系对DNAPL污染含水层的增溶增流修复研究. 硕士学位论文, 吉林大学, 2020.
2 Zheng F. investigation on the migration and mediation of typical DNAPLs in saturated porous media. Ph. D. Thesis, Nanjing University, China, 2015 (in Chinese).
郑菲. 典型DNAPLs在饱和多孔介质中的运移及修复研究. 博士学位论文, 南京大学, 2015.
3 Maire J, Coyer A, Fatin-Rouge N. Journal of Hazardous Materials, 2015, 299, 630.
4 You X J, Liu S G, Dai C M, et al. Environmental Science and Pollution Research, 2020, 27(33), 41623.
5 Chowdhury A I A, Gerhard J I, Reynolds D, et al. Water Research, 2017, 113, 215.
6 Chen X L. Experimental study and numerical modeling on one-dimension solute transport in low permeability media. Master's Thesis, China University of Geosciences, China, 2015 (in Chinese).
陈晓恋. 低渗透介质中-维溶质运移实验与模拟研究. 硕士学位论文, 中国地质大学, 2015.
7 Dominguez C M, Romero A, Santos A. Chemical Engineering Journal, 2019, 376, 9.
8 Liang C J, Weng C Y. Journal of Hazardous Materials, 2022, 439, 8.
9 Fernandez J, Arjol M A, Cacho C. Environmental Science and Pollution Research, 2013, 20(4), 1937.
10 Moccia E, Intiso A, Cicatelli A, et al. Environmental Science and Pollution Research, 2017, 24(12), 11053.
11 Gao Y B, Zhang S B, Li T, et al. Journal of Tongji University(Natural Science), 2020, 48(1), 24 (in Chinese).
高彦斌, 张松波, 李韬, 等. 同济大学学报(自然科学版), 2020, 48(1), 24.
12 Schwille F. In: Pollutants in porous media, Yaron B, Dagan G, Goldshmid J, ed. , Springer, Berlin, 1984, pp. 27.
13 Tatti F, Papini P M, Torretta V, et al. Journal of Contaminant Hydrology, 2019, 222, 89.
14 Choong C E, Wong K T, Jang S B, et al. Journal of Environmental Chemical Engineering, 2022, 10(1), 107075.
15 Zhang J L. Research of the remediation of TCE-polluted low permeability media by using hydraulic fracturing. Master's Thesis, Jilin University, China, 2018 (in Chinese).
张久麟. 水力压裂法修复TCE污染低渗介质的研究. 硕士学位论文, 吉林大学, 2018.
16 Atkinson G M, Eaton D W, Igonin N. Nature Reviews Earth & Environment, 2020, 1(5), 264.
17 Miller C T, Weber W J. Ground Water, 1984, 22(5), 584.
18 Wei Y F. Influential factors of surfactant-enhanced remediation of PAHs contaminated soils and its mechanisms. Ph. D. Thesis, South China University of Technology, China, 2015 (in Chinese).
魏燕富. 表面活性剂增效修复PAHs污染土壤的影响因素及机制. 博士学位论文, 华南理工大学, 2015.
19 Li S. The washing remediation of the contaminated soil by PAHs with surfactants. Master's Thesis, Shenyang University, China, 2017(in Chinese).
李爽. 表面活性剂对多环芳烃污染土壤的淋洗修复研究. 硕士学位论文, 沈阳大学, 2017.
20 Liang X J. Co-solubilization of mixed polycyclic aromatic hydrocarbons (PAHs) in surfactant micelle systems. Ph. D. Thesis, South China University of Technology, China, 2017(in Chinese).
梁旭军. 多环芳烃混合物在表面活性剂胶束体系中的增溶机制研究. 博士学位论文, 华南理工大学, 2017.
21 Zhang J Y. Enhanced flushing remediation of tetrachloroethylene contaminated aquifers by in situ microemulsions. Master's Thesis, Jilin University, China, 2021 (in Chinese).
张婧懿. 原位微乳液对四氯乙烯污染含水层的强化冲洗修复研究. 硕士学位论文, 吉林大学, 2021.
22 Colombano S, Davarzani H, Van Hullebusch E D, et al. Science of the Total Environment, 2021, 760, 143958.
23 Su Y, Zhao Y S, Li L L, et al. China Environmental Science, 2015, 35(3), 817 (in Chinese).
苏燕, 赵勇胜, 李璐璐, 等. 中国环境科学, 2015, 35(3), 817.
24 Zhong L, Szecsody J, Oostrom M, et al. Journal of Hazardous Materials, 2011, 191(1-3), 249.
25 Mulligan C N, Wang S. Engineering Geology, 2006, 85(1-2), 75.
26 Maire J, Fatin-Rouge N. Journal of Hazardous Materials, 2017, 321, 247.
27 Couto H J, Massarani G, Biscaia E C, et al. Journal of Hazardous Materials, 2009, 164, 1325.
28 Fleifel H, Izadi M, Park S, et al. Transport in Porous Media, 2020, 134(3), 565.
29 Roothmel R K, Peters R W, Stmartin E, et al. Environmental Science & Technology, 1998, 32(11), 1667.
30 Gao K N. Study on removal of typical organic matter-heavy metal complex pollutants in soil by microbubble coupling detergent and its mechanism. Master's Thesis, Donghua University, China, 2022 (in Chinese).
高康宁. 微气泡耦合洗涤剂脱除土壤中典型有机物-重金属复合污染物及机理研究. 硕士学位论文, 东华大学, 2022.
31 Boonamnuayvitaya V, Jutaporn P, Sae-ung S, et al. Separation and Purification Technology, 2009, 68(3), 411.
32 Yan Y L, Deng Q, He F, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385(1-3), 219.
33 Dai C, Tong W K, Zou J J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644.
34 Maire J, Brunol E, Fatin-Rouge N. Chemosphere, 2018, 197, 661.
35 Boufadel M C, Jj W, Jayalakshmamma M P, et al. Journal of Environmental Engineering, 2021, 147(3), 03120011.
36 Silva J A K, Liberatore M, Mccray J E. Journal of Environmental Engineering, 2013, 139(2), 149.
37 Martel R, Hebert A, Lefebvre R, et al. Journal of Contaminant Hydrology, 2004, 75(1-2), 1.
38 Robert T, Martel R, Conrad S H, et al. Journal of Contaminant Hydrology, 2006, 86(1-2), 3.
39 Attela O, Del Campo Estrada E, Bertin H. Reviews in Environmental Science and Bio/Technology, 2013, 12(4), 379.
40 Hauswirth S C, Miller C T. Journal of Contaminant Hydrology, 2014, 167, 44.
41 Martel K E, Martel R, Lefebvre R, et al. Groundwater Monitoring & Remediation, 1998, 18(3), 103.
42 Lian J R. Application of KMnO4 for remediation of TCE-contaminated heterogeneous aquifer under viscosity control: mechanisms and effectiveness. Master's Thesis, Jilin University, China, 2018 (in Chinese).
廉静茹. 流体粘度调控下KMnO4对TCE非均质含水层污染的强化修复机理与效能. 硕士学位论文, 吉林大学, 2018.
43 Wang H, Chen J. Environmental Technology, 2014, 35(5-8), 993.
44 Hirasaki G J, Miller C A, Szafranski R, et al. In: the SPE Annual Technical Conference and Exhibition. Texas, 1997, pp. 1836.
45 Mulligan C N, Eftekhari F. Engineering Geology, 2003, 70(3-4), 269.
46 Bouzid I, Fatin-Rouge N. Journal of Hazardous Materials, 2022, 432, 128703.
47 Zhong L, Oostrom M, Wietsma T W, et al. Journal of Contaminant Hydrology, 2008, 101(1-4), 29.
48 Rodrigo M A, Rodrigo M A, Dos Santos E V, et al. Electrochemically assisted remediation of contaminated soils: fundamentals, technologies, combined processes and pre-pilot and scale-up applications, Springer, Switzerland, 2021, pp. 30.
49 Koliyabandara S M P A, Siriwardhana C, De Silva S M, et al. In: Electrokinetic remediation for environmental security and sustainability, Wiley, US, 2021, pp. 453.
50 Wang X, Ren L, Long T, et al. Environmental Chemistry Letters, DOI: 10. 1007/s10311-022-01506-w.
51 Pazos M, Rosales E, Alcantara T, et al. Journal of Hazardous Materials, 2010, 177(1-3), 1.
52 Kebria D Y, Taghizadeh M, Camacho J V, et al. Environmental Earth Sciences, 2016, 75, 699.
53 Du W, Zou H, Yu C S, et al. Environmental Engineering Science, 2017, 34(12), 908.
54 Qiao W, Ye S, Wu J, et al. Ground Water, 2018, 56(4), 673.
55 Maturi K, Reddy K R. Water, Air, and Soil Pollution, 2008, 189(1), 199.
56 Alcántara T, Pazos M, Cameselle C, et al. Environmental Geochemistry and Health, 2008, 30(2), 89.
57 Yeung A T, Gu Y Y. Journal of Hazardous Materials, 2011, 195, 11.
58 Yuan S, Tian M, Lu X. Journal of Hazardous Materials, 2006, 137(2), 1218.
59 Li T, Yuan S, Wan J, et al. Journal of Hazardous Materials, 2010, 176(1-3), 306.
60 Chang J H, Qiang Z, Huang C P. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2006, 287(1), 86.
61 Zou H, Du W, Ji M, et al. Environmental Engineering Science, 2016, 33(7), 507.
62 Reddy K R, Darko-Kagya K, Al-Hamdan A Z. Water, Air, & Soil Pollution, 2011, 221(1-4), 35.
63 Ik Chung H, Kamon M. Engineering Geology, 2005, 77(3-4), 233.
64 Pham T D, Sillanpää M. Advanced Water Treatment, 2020, 227, 1403.
65 Zheng D, Geng Z, Huang W, et al. Journal of Hazardous Materials, 2022, 439, 129633.
66 Geng Z, Liu B, Li G, et al. Journal of Hazardous Materials, 2021, 413, 125455.
67 Mumford K G, Martin E J, Kueper B H. Journal of Contaminant Hydro-logy, 2021, 243, 103892.
68 Reddy K R, Darko-Kagya K, Al-Hamdan A Z. Environmental Enginee-ring Science, 2011, 28(6), 405.
69 Liu B, Li G, Mumford K G, et al. Chemosphere, 2020, 250, 126209.
70 Jiradecha C, Urgun-Demirtas M, Pagilla K. Journal of Hazardous Mate-rials, 2006, 136(1), 61.
71 Pham T D, Shrestha R A, Virkutyte J, et al. Electrochimica Acta, 2009, 54(5), 1403.
[1] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[2] 盛友杰, 彭云川, 张含灵, 阎灿彬, 李杨, 马文智. SiO2纳米颗粒对环保型泡沫灭火剂稳定性的影响[J]. 材料导报, 2023, 37(18): 22050272-6.
[3] 樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望[J]. 材料导报, 2023, 37(17): 21110105-22.
[4] 焦金庆, 韦岳长, 吴京峰, 郎需庆, 尚祖政, 牟善军, 牟小冬, 崔芃雨, 陆鹏. 基于有机硅表面活性剂的环保泡沫灭火剂的制备及灭火性能研究[J]. 材料导报, 2022, 36(20): 22020009-6.
[5] 亓磊, 焦金庆, 熊靖, 赖可溱, 韦岳长. 用于液体火灾的环保泡沫灭火剂研究现状[J]. 材料导报, 2022, 36(20): 22040233-7.
[6] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[7] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[8] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[9] 代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
[10] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[11] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[12] 殷鑫, 孟征兵, 胡浩. 低成本Al-Ti-Cr高强耐海水腐蚀钢耐蚀性能研究[J]. 材料导报, 2021, 35(14): 14084-14088.
[13] 刘仁杰, 李三喜, 王松, 张爱玲. 蒙脱土剥离方法的研究进展[J]. 材料导报, 2020, 34(Z1): 249-254.
[14] 杨学平, 王正江, 蒋超宇, 薛秀丽. 基于BP神经网络法研究锂电池荷电状态[J]. 材料导报, 2019, 33(Z2): 53-55.
[15] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed