Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22070109-11    https://doi.org/10.11896/cldb.22070109
  无机非金属及其复合材料 |
二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展
季雪梅1, 郝驰1, 朱秀梅1, 苏江滨1,2,3,*, 何祖明1, 唐斌1, 朱贤方2,*
1 常州大学微电子与控制工程学院,电子科学与技术实验中心,江苏 常州 213159
2 厦门大学物理科学与技术学院,中国-澳大利亚功能纳米材料联合实验室,福建 厦门 361005
3 东南大学电子科学与工程学院,MEMS教育部重点实验室,南京 210096
Research Progress on Defect Structure Evolution and the Corresponding Physical Mechanisms of Molybdenum Disulfide Under Electron Beam Irradiation
JI Xuemei1, HAO Chi1, ZHU Xiumei1, SU Jiangbin1,2,3,*, HE Zuming1, TANG Bin1, ZHU Xianfang2,*
1 Experimental Center of Electronic Science and Technology, School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, Jiangsu, China
2 China-Australia Joint Laboratory of Functional Nanomaterials, School of Physical Science and Technology, Xiamen University, Xiamen 361005, Fujian, China
3 Key Laboratory of MEMS Education Department, School of Electronic Science and Engineering, Southeast University, Nanjing 210096,China
下载:  全 文 ( PDF ) ( 82337KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二硫化钼(MoS2)丰富的多原子结构赋予了它优异的电学、光学、催化等性能,这引起了人们的极大兴趣。而MoS2中存在的缺陷结构往往会对其性能产生显著的影响,通常认为这种影响是负面的,因此以往的研究几乎都是在尽量避免缺陷结构的产生。但是最近也有一些研究表明MoS2缺陷的存在对其应用起到了积极作用。为了能够更好地利用MoS2的缺陷结构,使其产生积极影响,首先需要了解这些缺陷结构,弄清楚它们的演变方式和相关物理机制,并用来指导MoS2的可控纳米加工和实际应用。本文总结了MoS2不同类型的缺陷结构以及在电子束辐照下MoS2的结构演变行为,从中探究电子束与MoS2缺陷结构交互作用的机理。通过分析传统物理机制的不足,提出了两个全新的概念——纳米曲率效应和电子束非热激活效应,分别从纳米空间限制角度和超快时间限制角度来挖掘这些实验现象背后的深层物理机制。最后,本文还提出了对MoS2缺陷结构调制与纳米可控加工的看法和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季雪梅
郝驰
朱秀梅
苏江滨
何祖明
唐斌
朱贤方
关键词:  二硫化钼(MoS2)  缺陷结构  结构演变  物理机制  透射电子显微镜    
Abstract: The rich polyatomic structures of molybdenum disulfide (MoS2) bestow upon it with excellent electrical, optical, and catalytic properties, arousing great interest. The defect structures in MoS2 often have a significant impact on its performance, which is generally considered to be negative. Therefore, previous studies aimed at avoiding the occurrence of defect structures. However, some recent studies have shown that MoS2 defects also have positive significance in their applications. To better leverage the defect structures of MoS2 and harness their positive impact, it is first necessary to understand these defect structures, their evolution modes and related physical mechanisms, and use them to guide the controllable nanoprocessing and practical applications. In this review, the authors summarize the different types of defect structures in MoS2 and the structural evolution behavior of MoS2 under electron beam irradiation, and then explore the mechanisms of the interaction between electron beam and MoS2 defect structures. By analyzing the limitations of traditional physical mechanisms, the authors propose two new concepts—nanocurvature effect and non-thermal activation effect to delve into the underlying physical mechanisms of these experimental phenomena. This exploration is conducted from the perspectives of nano-space limitation and ultrafast time limitation. Finally, the authors present their perspectives and prospects on defect structure modulation and controllable nanoprocessing of MoS2.
Key words:  molybdenum disulfide (MoS2)    defect structure    structural evolution    physical mechanism    transmission electron microscope
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  O766+.1  
基金资助: 江苏省基础研究计划(自然科学基金)(BK20191453);江苏省研究生科研创新计划(KYCX21_2825;KYCX21_2819)
通讯作者:  *苏江滨,常州大学微电子与控制工程学院教授、硕士研究生导师。2005年厦门大学物理系物理学专业本科毕业,2008年厦门大学物理系凝聚态物理专业硕士毕业后到常州大学工作至今,2017年厦门大学物理系凝聚态物理专业博士毕业。目前主要从事光电功能材料与器件、纳米科学与技术等方面的研究工作。发表论文80余篇,包括Nanoscale、Nanotechnology、Science China Materials、Surface & Coatings Technology、Journal of Physical Chemistry C、Journal of Alloys and Compounds等。jbsu@cczu.edu.cn;
朱贤方,厦门大学物理科学与技术学院教授,澳大利亚昆士兰大学兼职教授,博士研究生导师,中国-澳大利亚功能纳米材料联合实验室主任。主要从事纳米材料设计、制备、改性及纳米结构稳定方面的研究工作。目前共发表100余篇论文(80%以上为第一或独立作者),相关技术已申请发明专利7项,参与制定国家标准1个。zhux@xmu.edu.cn   
作者简介:  季雪梅,2019年6月于盐城师范学院获得工学学士学位。现为常州大学微电子与控制工程学院硕士研究生,在苏江滨教授的指导下进行研究。目前主要研究领域为纳米材料结构不稳定性、光电功能材料与器件。
引用本文:    
季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
JI Xuemei, HAO Chi, ZHU Xiumei, SU Jiangbin, HE Zuming, TANG Bin, ZHU Xianfang. Research Progress on Defect Structure Evolution and the Corresponding Physical Mechanisms of Molybdenum Disulfide Under Electron Beam Irradiation. Materials Reports, 2024, 38(3): 22070109-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070109  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22070109
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
2 Fiori G, Bonaccorso F, Iannaccone G, et al. Nature Nanotechnology, 2014, 9(10), 768.
3 Novoselov K S, Fal'ko V I, Colombo L, et al. Nature, 2012, 490(7419), 192.
4 Eda G, Fanchini G, Chhowalla M. Nature Nanotechnology, 2008, 3(5), 270.
5 Bonaccorso F, Sun Z, Hasan T, et al. Nature Photonics, 2010, 4(9), 611.
6 Mueller T, Xia F N, Avouris P. Nature Photonics, 2010, 4(5), 297.
7 Schedin F, Geim A K, Morozov S V, et al. Nature Materials, 2007, 6(9), 652.
8 Shao Y Y, Wang J, Wu H, et al. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2010, 22(10), 1027.
9 Wang C Y, Xia K L, Wang H M, et al. Advanced Materials, 2019, 31(9), 1801072.
10 Schwierz F. Nature Nanotechnology, 2010, 5(7), 487.
11 Han M Y, zyilmaz B, Zhang Y B, et al. Physical Review Letters, 2007, 98(20), 206805.
12 Moreno-Moreno M, Castellanos-Gomez A, Rubio-Bollinger G, et al. Small, 2009, 5(8), 924.
13 Oostinga J B, Heersche H B, Liu X L, et al. Nature Materials, 2008, 7(2), 151.
14 Kim M, Safron N S, Han E, et al. Nano Letters, 2010, 10(4), 1125.
15 Radisavljevic B, Radenovic A, Brivio J, et al. Nature Nanotechnology, 2011, 6(3), 147.
16 Lembke D, Bertolazzi S, Kis A. Accounts of Chemical Research, 2015, 48(1), 100.
17 Tong X, Ashalley E, Lin F, et al. Nano-Micro Letters, 2015, 7, 203.
18 Zheng L, Wang X W, Jiang H J, et al. Nano Research, 2022, 15, 2413.
19 Kumar R, Zheng W, Liu X H, et al. Advanced Materials Technologies, 2020, 5(5), 1901062.
20 Hu H W, Zavabeti A, Quan H Y, et al. Biosensors and Bioelectronics, 2019, 142, 111573.
21 Mak K F, Lee C, Hone J, et al. Physical Review Letters, 2010, 105(13), 136805.
22 Splendiani A, Sun L, Zhang Y B, et al. Nano Letters, 2010, 10(4), 1271.
23 Yang X G, Li B J. Nanophotonics, 2020, 9(7), 1557.
24 Wadhwa R, Agrawal A V, Kumar M. Journal of Physics D: Applied Physics, 2021, 55(6), 063002.
25 Li Z Z, Meng X C, Zhang Z S. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 39.
26 Cao Y. ACS Nano, 2021, 15(7), 11014.
27 Yan Y T, Wang P C, Lin J H, et al. Journal of Energy Chemistry, 2021, 58, 446.
28 Zhang Y G, Zhang Y H, Zhang H F, et al. Coordination Chemistry Reviews, 2021, 448, 214147.
29 Pisal K B, Babar B M, Mujawar S H, et al. Journal of Energy Storage, 2021, 43, 103297.
30 Zhang Y X, Zhang L, Lv T A, et al. ChemSusChem, 2020, 13(6), 1114.
31 Zhao X X, Ning S C, Fu W, et al. Advanced Materials, 2018, 30(47), 1802397.
32 Kim J S, Kim J, Zhao J, et al. ACS Nano, 2016, 10(8), 7500.
33 Yang Z F, Zhu L, Lv C N, et al. Materials Chemistry Frontiers, 2021, 5(16), 5880.
34 Seo S Y, Yang D H, Moon G, et al. Nano Letters, 2021, 21(8), 3341.
35 Hu Z H, Wu Z T, Han C, et al. Chemical Society Reviews, 2018, 47(9), 3100.
36 Chen Y, Huang S X, Ji X, et al. ACS Nano, 2018, 12(3), 2569.
37 Nan H Y, Wang Z L, Wang W H, et al. ACS Nano, 2014, 8(6), 5738.
38 Xie J F, Zhang H, Li S, et al. Advanced Materials, 2013, 25(40), 5807.
39 Sangwan V K, Lee H S, Bergeron H, et al. Nature, 2018, 554(7693), 500.
40 Mendes R G, Pang J B, Bachmatiuk A, et al. ACS Nano, 2019, 13(2), 978.
41 Xu T, Sun L T. Small, 2015, 11(27), 3247.
42 Su J B, Wang Z W, Ma J, et al. SN Applied Sciences, 2021, 3, 1.
43 Cheng L, Su J B, Zhu X F. Materials Letters, 2019, 237, 286.
44 Su J B, Zhu X F. Nanotechnology, 2018, 29(23), 235703.
45 Cheng L, Zhu X F, Su J B. Nanoscale, 2018, 10(17), 7978.
46 Su J B, Zhu X F. RSC Advances, 2017, 7(72), 45691.
47 Su J B, Zhu X F. RSC Advances, 2017, 7(68), 43047.
48 Li L X, Su J B, Zhu X F. Applied Physics A, 2016, 122, 1.
49 Zhu X F, Li L X, Su J B, et al. The Journal of Physical Chemistry C, 2015, 119(11), 6239.
50 Zhu X F, Su J B, Wu Y, et al. Nanoscale, 2014, 6(3), 1499.
51 Su J B, Zhu X F, Li L X, et al. Chinese Science Bulletin, 2010, 55(16), 1632(in Chinese).
苏江滨, 朱贤方, 李论雄, 等. 科学通报, 2010, 55(16), 1632.
52 Su J B, Zhu X F, Li L X, et al. Chinese Science Bulletin, 2010, 55(13), 1288(in Chinese).
苏江滨, 朱贤方, 李论雄, 等. 科学通报, 2010, 55(13), 1288.
53 Zhou W, Zou X L, Najmaei S, et al. Nano Letters, 2013, 13(6), 2615.
54 Hong J H, Hu Z X, Probert M, et al. Nature Communications, 2015, 6(1), 6293.
55 Komsa H P, Kotakoski J, Kurasch S, et al. Physical Review Letters, 2012, 109(3), 035503.
56 Komsa H P, Kurasch S, Lehtinen O, et al. Physical Review B, 2013, 88(3), 035301.
57 Chen Q, Li H S, Zhou S, et al. ACS Nano, 2018, 12(8), 7721.
58 Ryu G H, Lee J, Kim N Y, et al. 2D Materials, 2016, 3(1), 014002.
59 Wang S S, Lee G D, Lee S, et al. ACS Nano, 2016, 10(5), 5419.
60 Wang X W, Hou L F, Huang W, et al. Rare Metals, 2022, 41, 333.
61 Shen Y T, Xu T, Tan X D, et al. Advanced Materials, 2018, 30(14), 1705954.
62 Egerton R F. Microscopy and Microanalysis, 2013, 19(2), 479.
63 Liu X F, Xu T, Wu X, et al. Nature Communications, 2013, 4(1), 1776.
64 Lin J H, Cretu O, Zhou W, et al. Nature Nanotechnology, 2014, 9(6), 436.
65 Van Der Zande A M, Huang P Y, Chenet D A, et al. Nature Materials, 2013, 12(6), 554.
66 Chen J, Zhou S, Wen Y, et al. Nanoscale, 2019, 11(4), 1901.
67 Najmaei S, Liu Z, Zhou W, et al. Nature Materials, 2013, 12(8), 754.
68 Azizi A, Zou X L, Ercius P, et al. Nature Communications, 2014, 5(1), 4867.
69 Huang P Y, Ruiz-Vargas C S, Van Der Zande A M, et al. Nature, 2011, 469(7330), 389.
70 Kim K, Lee Z, Regan W, et al. ACS Nano, 2011, 5(3), 2142.
71 Zou X L, Liu Y Y, Yakobson B I. Nano Letters, 2013, 13(1), 253.
72 Li Y F, Zhou Z, Zhang S B, et al. Journal of the American Chemical Society, 2008, 130(49), 16739.
73 Zhao X X, Fu D Y, Ding Z J, et al. Nano Letters, 2018, 18(1), 482.
74 Huang W, Wang X W, Ji X J, et al. Nano Research, 2018, 11, 5849.
75 Kibsgaard J, Tuxen A, Levisen M, et al. Nano Letters, 2008, 8(11), 3928.
76 Banhart F. Reports on Progress in Physics, 1999, 62(8), 1181.
77 Zhu X F, Wang Z G. International Journal of Nanotechnology, 2006, 3(4), 492.
78 Zhu X F. Journal of Applied Physics, 2006, 100(3), 034304.
79 Zhu X F, Meng T, Li L X, et al. In: 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Zhuhai, China, 2006, pp. 462.
80 Zhu X F, Li L X, Huang S L, et al. Carbon, 2011, 49(9), 3120.
81 Zhu X F. Journal of Physics: Condensed Matter, 2003, 15(17), L253.
82 Zhu X F, Wang Z G. Chinese Physics Letters, 2005, 22(3), 737.
83 Su J B, Zhu X F. Nanoscale Research Letters, 2016, 11, 1.
[1] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[2] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[3] 任高远, 苏宏久, 王树东. 纳米氧化硅制备的成核过程:Ⅱ.成核阶段的可视化研究[J]. 材料导报, 2022, 36(12): 21040113-5.
[4] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[5] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[6] 张文沛, 李欢欢, 胡志力, 秦训鹏. 车用轻量化铝合金材料本构关系研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 85-89.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed