Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22110109-6    https://doi.org/10.11896/cldb.22110109
  无机非金属及其复合材料 |
微波法制备碳纳米材料的机理及进展
王加悦, 周涵*
上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240
Microwave Synthesis of Carbon Nanomaterials:Mechanisms and Recent Progress
WANG Jiayue, ZHOU Han*
State Key Laboratory of Metal Matrix Composites, Department of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 16843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波法具有加热快速、易于控制、反应均匀等优点,是制备功能性碳纳米材料的重要技术。其制备原理是基于碳基材料优异的本征介电性能,碳基材料与微波电磁场相互作用产生介电损耗,快速形成局部高能场,实现高速制备。本文首先简要介绍了微波与物质的相互作用机理,然后分别从微波在制备过程中的作用、关键实验参数以及微波制备的碳材料的特征等方面详细介绍了微波作为能量输入制备一维碳纳米管、二维石墨烯以及三维纳米多孔碳的优势,最后对宏量快速制备多功能和高性能碳纳米材料的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王加悦
周涵
关键词:  微波法  碳纳米材料  碳纳米管  石墨烯  多孔碳    
Abstract: Microwave method is an important technique for the synthesis of functional carbon nanomaterials, with advantages of rapid heating, easy to control and uniform reaction. The synthetic mechanism is based on the excellent intrinsic dielectric properties of carbon materials, which can have strong interactions with the microwave electromagnetic field, thus causing strong dielectric loss and localized high energy field for the fast synthesis. In this paper, we briefly introduce the interaction mechanism between microwave and matter. Then the advantages of microwave as energy input for the preparation of 1D carbon nanotubes, 2D graphene and 3D nano-porous carbon are introduced in detail from aspects of the microwave functions, key experimental parameters and the characteristics of carbon materials prepared by microwave. Finally, approaches for fast synthesis of multifunctional and high-performance carbon nanomaterials on large scale are prospected.
Key words:  microwave    carbon nanomaterial    carbon nanotube    graphene    porous carbon
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2017YFE0127100)
通讯作者:  *周涵,上海交通大学材料科学与工程学院及金属基复合材料国家重点实验室教授、博士研究生导师。2010年获得上海交通大学-美国加州大学戴维斯分校联合培养博士学位,2012—2013年在日本国立物质材料研究所从事博士后工作,2013—2014年在德国马普所胶体与界面研究所从事洪堡学者研究。近年来,在PNAS、Adv.Mater.、Adv.Funct.Mater.、ACS Nano等发表SCI文章70余篇,主要研究方向为仿生材料与智能材料、超材料、热调控材料。hanzhou_81@sjtu.edu.cn   
作者简介:  王加悦,2019年6月于大连理工大学获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生。目前主要研究领域为微波法功能材料的制备及性能。
引用本文:    
王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
WANG Jiayue, ZHOU Han. Microwave Synthesis of Carbon Nanomaterials:Mechanisms and Recent Progress. Materials Reports, 2024, 38(3): 22110109-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110109  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22110109
1 Yin J, Zhang W, Alhebshi N A, et al. Small Methods, 2020, 4(3), 1900853.
2 Zhu J, Mu S. Advanced Functional Materials, 2020, 30(25), 2001097.
3 Quan B, Shi W, Ong S J H, et al. Advanced Functional Materials, 2019, 29(28), 1901236.
4 Gong W, Yuan Q, Chen C, et al. Advanced Materials, 2019, 31(49), 1906051.
5 Yao X, Hawkins S C, Falzon B G. Carbon, 2018, 136, 130.
6 Wang J, Wu W, Kondo H, et al. Nanotechnology, 2022, 33(34), 342002.
7 Kang Y, Du H, Jiang B, et al. Journal of Materials Chemistry A, 2022, 10(12), 6560.
8 Wan J, Huang L, Wu J, et al. Advanced Functional Materials, 2018, 28(22), 1800382.
9 Seong K D, Jin X, Kim D, et al. Journal of Electroanalytical Chemistry, 2020, 874, 114464.
10 Schwenke A M, Hoeppener S, Schubert U S. Advanced Materials, 2015, 27(28), 4113.
11 Micheli D, Apollo C, Pastore R, et al. Composites Science and Technology, 2010, 70(2), 400.
12 Wang Z, Yu C, Huang H, et al. Nano Energy, 2021, 85, 106027.
13 Zeng X, Cheng X, Yu R, et al. Carbon, 2020, 168(6), 606.
14 Green M, Chen X. Journal of Materiomics, 2019, 5(4), 503.
15 Du Y, Liu T, Yu B, et al. Materials Chemistry and Physics, 2012, 135(2-3), 884.
16 Harutyunyan A R, Pradhan B K, Chang J, et al. The Journal of Physical Chemistry B, 2002, 106(34), 8671.
17 Wadhawan A, Garrett D, Perez J M. Applied Physics Letters, 2003, 83(13), 2683.
18 Zhao Y, He J. Carbon, 2021, 178, 734.
19 Zhang P, Shu Y, Wang Y, et al. Chemical Engineering Journal, 2022, 443, 136050.
20 Liu Z, Wang J, Kushvaha V, et al. Chemical Communications, 2011, 47(35), 9912.
21 Nie H, Cui M, Russell T P. Chemical Communications, 2013, 49(45), 5159.
22 Jie X, Li W, Slocombe D, et al. Nature Catalysis, 2020, 3(11), 902.
23 Chen W, Yan L, Bangal P R. Carbon, 2010, 48(4), 1146.
24 Murugan A V, Muraliganth T, Manthiram A. Chemistry of Materials, 2009, 21(21), 5004.
25 Bajpai R, Wagner H D. Carbon, 2015, 82, 327.
26 Sridhar V, Lee I, Chun H H, et al. Carbon, 2015, 87, 186.
27 Hülsey M J, Lim C W, Yan N. Chemical Science, 2020, 11(6), 1456.
28 Hildago-Oporto P, Navia R, Hunter R, et al. Journal of Environmental Management, 2019, 244, 83.
29 Bajpai R, Wagner H D. Carbon, 2015, 82, 327.
30 Fidalgo B, Fernández Y, Zubizarreta L, et al. Applied Surface Science, 2008, 254(11), 3553.
31 Hong E H, Lee K H, Oh S H, et al. Advanced Functional Materials, 2003, 13(12), 961.
32 Vázquez E, Prato M. ACS Nano, 2009, 3(12), 3819.
33 Yang H, Zhou C, An J, et al. Journal of Alloys and Compounds, 2022, 897, 163257.
34 Sreekanth T V M, Dillip G R, Nagajyothi P C, et al. Applied Catalysis B:Environmental, 2021, 285, 119793.
35 Matsumoto M, Saito Y, Park C, et al. Nature Chemistry, 2015, 7(9), 730.
36 Janowska I, Chizari K, Ersen O, et al. Nano Research, 2010, 3(2), 126.
37 Wang P, Guo B, Ma H, et al. Chemical Engineering Journal, 2020, 399, 125758.
38 Hu H, Zhao Z, Zhou Q, et al. Carbon, 2012, 50(9), 3267.
39 Zhao Y, He J. Carbon, 2019, 148(46), 159.
40 Li Z, Yao Y, Lin Z, et al. Journal of Materials Chemistry, 2010, 20(23), 4781.
41 Zou X, Hao J, Qiang Y, et al. Journal of Colloid and Interface Science, 2020, 565, 288.
42 Voiry D, Yang J, Kupferberg J, et al. Science, 2016, 353(6306), 1413.
43 Park S H, Bak S M, Kim K H, et al. Journal of Materials Chemistry, 2011, 21(3), 680.
44 Liu R, Zhang Y, Ning Z, et al. Angewandte Chemie International Edition, 2017, 56(49), 15677.
45 Zedan A F, Sappal S, Moussa S, et al. The Journal of Physical Chemistry C, 2010, 114(47), 19920.
46 Malesevic A, Vitchev R, Schouteden K, et al. Nanotechnology, 2008, 19(30), 305604.
47 Wang Z, Li Y, Liu J, et al. Carbon, 2021, 172, 26.
48 Zafar M A, Varghese O K, Robles H F C, et al. ACS Applied Materials & Interfaces, 2022, 14(4), 5797.
49 Fei H, Dong J, Wan C, et al. Advanced Materials, 2018, 30(35), e1802146.
50 Chahal S, Nair A K, Ray S J, et al. Chemical Engineering Journal, 2022, 450(7772), 138447.
51 Gong H, Wei Z, Gong Z, et al. Advanced Functional Materials, 2022, 32(5), 2106886.
52 Yang W, Li X, Li Y, et al. Advanced Materials, 2019, 31(6), e1804740.
53 Fan M, Liao D, Aboud M F A, et al. Angewandte Chemie International Edition, 2020, 59(21), 8247.
54 Green M, Liu Z, Xiang P, et al. Materials Today Chemistry, 2018, 9, 140.
55 Yang W, Zhao Q, Zhou Y, et al. Advanced Engineering Materials, 2022, 24(4), 2100964.
56 Tan J, Thomas T, Liu J, et al. Chemical Engineering Journal, 2020, 395, 125151.
57 Wang B, Tang J, Zhang X, et al. Chemical Engineering Journal, 2022, 437, 135295.
58 Xu Y, Sheng K, Li C, et al. ACS Nano, 2010, 4(7), 4324.
59 Thiruppathi A R, van der Zalm J, Zeng L, et al. Journal of Energy Sto-rage, 2022, 48, 103962.
60 Xia X, Cheng C F, Zhu Y, et al. Microporous and Mesoporous Materials, 2021, 310, 110639.
61 Dudley G B, Richert R, Stiegman A E. Chemical Science, 2015, 6(4), 2144.
62 Kappe C O, Pieber B, Dallinger D. Angewandte Chemie International Edition, 2013, 52(4), 1088.
[1] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[2] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[3] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[4] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[5] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[6] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[7] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[8] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[9] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[12] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[13] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[14] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[15] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed