Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22030167-10    https://doi.org/10.11896/cldb.22030167
  无机非金属及其复合材料 |
黑滑石的矿物学特征及加工与应用研究进展
刘茜1,2,3, 梁晓正1,3, 杨华明1,3,4,5,*
1 中南大学资源加工与生物工程学院,长沙 410083
2 江西省自然资源权益与储备保障中心,南昌 330025
3 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
4 中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心,武汉 430074
5 中国地质大学(武汉)中国非金属矿行业矿物功能材料重点实验室,武汉 430074
Research Progress on Mineralogical Characteristics, Processing and Utilization of Black Talc
LIU Xi1,2,3, LIANG Xiaozheng1,3, YANG Huaming1,3,4,5,*
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2 Jiangxi Province Natural Resources Interests and Reserve Security Center, Nanchang 330025, China
3 Hunan Key Laboratory for Mineral Materials and Application, Central South University, Changsha 410083, China
4 Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, Wuhan 430074, China
5 Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 13556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来我国黑滑石矿床探明储量剧增,应用研究广泛。为满足经济建设发展和人民日益增长的需要,近年来,我国大力发展黑滑石等黏土矿物。在经济战略发展的重要时期,滑石是我国的战略性非金属矿物,为我国矿物功能材料发展的重大突破口,满足未来国家重大战略和发展需求。黑滑石具有特殊的2∶1型(T-O-T)含碳层状硅酸盐晶体结构、优异的理化特性、特殊较好的生物相容性,在新兴环保、能源和生物医学领域具有极大的应用潜力。
   目前黑滑石大多经过增白技术处理为白滑石后,应用于传统的陶瓷行业和基础填料中,研究方向主要为高效增白和超微细加工技术。然而,将黑滑石煅烧成为白滑石应用于传统行业,严重浪费了黑滑石的含碳层状硅酸盐晶体结构和理化特性。随着科学技术的发展,矿物学、化学、材料学和生物学等多学科的交叉融合,除了研究除碳增白在陶瓷和填料等传统行业中的应用外,利用黑滑石的理化性质,对其进行插层、剥片、酸浸等结构改性,以及表面改性处理、高技术表征等方法对矿物结构和性质进行剖析,在环保水处理、高新材料和生物医药材料等领域不断尝试,并取得了丰硕的成果。
   本文综述了黑滑石战略性应用研究进展,从黑滑石的矿物学特征和材料化加工技术研究现状等方面对当前黑滑石制备基础原材料、环保材料和高新材料的优越性和挑战进行了分析。介绍了常见的黑滑石基复合材料的进展,如在陶瓷行业和填料行业的应用,阐述了在节能环保、新能源和生物医药方面的优越性。另外,还介绍了未来黑滑石基复合材料的主要研究方向。本文可为废水吸附剂、新能源碳材料、隐身材料和非金属为载体的抗菌材料等战略性应用方向研究新型高效材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘茜
梁晓正
杨华明
关键词:  黑滑石  材料化加工  环保  抗菌  功能材料    
Abstract: Black talc is ubiquitous and widely used in China. In recent years, China has made significant efforts to develop black talc clay minerals in order to meet the needs of economic development and the growing demand of people. Talc is an important non-metallic mineral in China at a critical juncture in its strategic economic development and a breakthrough in future mineral functional materials development. It also has a commendable potential to address major national strategies and development needs. Black talc is a natural clay mineral with a specific 2∶1 layered (T-O-T) silicate crystal structure;due to its good biocompatibility, excellent physicochemical properties, and unique morphologic structure, black talc has great application potential in emerging environmental protection, energy, and biomedical fields.
Black talc is currently predominantly treated as white talc by whitening technologies used in the traditional ceramic industry and as a basic filler. The research is primarily focused on effective whitening and ultra-fine processing technology. However, the calcination of black talc into white talc is a significant loss since white talc application in conventional industry is unique from white talc's distinctive carboniferous laminate silicate crystal structure and physical and chemical properties. Based on the physicochemical properties of talc, the structure and properties of the mineral were investigated through intercalation, stripping, acid leaching, surface modification, and high-tech characterization, with successful outcomes in water treatment, high-tech materials, and biomedical materials.
This work reviews the research progress of strategic applications based on black talc. It expounds on the advantages of black talc matrix composites in energy conservation, environmental protection, new energy and biomedicine. Furthermore, future research directions for black talc matrix composites are discussed. This paper can provide a reference for exploring new, efficient materials such as wastewater adsorbents, new energy carbon materials, stealth materials and non-metallic antibacterial materials.
Key words:  black talc    material processing    environmental protection    antibacterial    function materials
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TD985  
基金资助: 国家重点研发计划 (2017YFB0310903)
通讯作者:  *杨华明,工学博士,中南大学、中国地质大学(武汉)教授、博士研究生导师,1990年本科毕业于中南工业大学选矿工程专业,1993年获中南工业大学矿业加工工程专业硕士学位,1998年获中南工业大学矿业加工工程专业博士学位。中组部国家“万人计划”领军人才、国家杰出青年科学基金获得者、科技部中青年科技创新领军人才。先后在英国布里斯托大学和澳大利亚昆士兰大学任访问学者。担任矿物材料及其应用湖南省重点实验室主任、纳米矿物材料及应用教育部工程研究中心主任、中国非金属矿行业矿物功能材料重点实验室主任。主要从事矿物材料、能源与环境材料、生物医药材料、材料计算、固废资源化等研究,致力于材料、矿物、化学、物理、生物医学等多学科交叉。在Adv.Funct.Mater.、Nano Energy、Environ.Sci.Technol.、Chem.Mater.、Appl.Catal.B、J.Mater.Chem.A、J.Phys.Chem.Lett.、ChemComm、Am.Mineral.、Clay Clay Miner.、Appl.Clay Sci.等发表SCI论文200多篇(其中自然指数期刊17篇、封面和综述21篇、ESI高被引8篇),SCI引用7 600余次,制定国家/行业标准4项,授权专利40余项,申请国际发明专利10件(授权4件),撰写Elsevier著作章节、出版学术专著5部、教材3部。hmyang@csu.edu.cn;hm.yang@cug.edu.cn   
作者简介:  刘茜,江西省自然资源权益与储备保障中心工程师,从事环境矿物材料、地质矿产勘查与开发研究。现为中南大学资源加工与生物工程学院博士研究生,在杨华明教授的指导下进行研究。目前主要研究领域为环境矿物材料。
引用本文:    
刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
LIU Xi, LIANG Xiaozheng, YANG Huaming. Research Progress on Mineralogical Characteristics, Processing and Utilization of Black Talc. Materials Reports, 2023, 37(21): 22030167-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030167  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22030167
1 Pi-Puig T, Animas-Torices D Y, Solé J. Minerals, 2020, 10(5), 388.
2 Jiang D Y. Talc, China Architecture and Building Press,China, 1978, pp. 17 (in Chinese).
江德玉. 滑石, 中国建筑工业出版社, 1978, pp. 17.
3 Xue Y H, Guo T T, Xue Z. Multipurpose Utilization of Mineral Resources, 2011(6), 34 (in Chinese).
薛彦辉, 郭婷婷, 薛真. 矿产综合利用, 2011(6), 34.
4 Chen Z G, Yan L Y, Gao S X. China Non-metallic Minerals Industry, 2021(2), 8 (in Chinese).
陈正国, 颜玲亚, 高树学. 中国非金属矿工业导刊, 2021(2), 8.
5 Li P, Liu W L, Yang S C. Bulletin of the Chinese Ceramic Society, 2013, 32(4), 668 (in Chinese).
李萍, 刘文磊, 杨双春. 硅酸盐通报, 2013, 32(4), 668.
6 Qi Y, Chen C X, Liu Y W, et al. China Non-metallic Minerals Industry, 2021(2), 65 (in Chinese).
齐颖, 陈从喜, 刘雨薇, 等. 中国非金属矿工业导刊, 2021(2), 65.
7 Zong P X. China Non-metallic Minerals Industry, 2014(1), 1 (in Chinese).
宗培新. 中国非金属矿工业导刊, 2014(1), 1.
8 Zhu X Y. Petrological characteristics and geochemistry and genesis of the black talc deposit in Guangfeng County, Jiangxi Province, Master's Thesis, China University of Geosciences, Beijing, China, 2020 (in Chinese).
朱馨怡. 江西广丰黑滑石矿床岩石学、地球化学特征及成因探讨, 硕士学位论文, 中国地质大学(北京), 2020.
9 Li C X, Mineralogy of black talc in Guangfeng County, Jiangxi Province, Ph. D. Thesis, Nanjing University, China, 2016 (in Chinese).
李成祥. 江西广丰黑滑石矿物学研究, 博士学位论文, 南京大学. 2016.
10 Wu J Q, Wen Z H, Li J X. China Non-metallic Minerals Industry, 2008(69), 12 (in Chinese).
吴基球, 文忠和, 李竟先. 中国非金属矿工业导刊, 2008(69), 12.
11 Aglietti E F. Applied Clay Science, 1994, 9, 139.
12 Cavajda V, Uhlik P, Derkowski A, et al. Clays and Clay Minerals, 2015, 63(4), 3l1.
13 Rayner J H, Brown G. Clays and Clay Minerals, 1973, 21, 103.
14 Schumann D, Hartman H, Eberl D D, et al. Clays and Clay Minerals, 2013, 6l(4), 342.
15 Vladimír C, Peter U, Arkadiusz D, et al. Clays and Clay Minerals, 2015, 63(4), 311
16 Li C X, Cheng R. American Mineralogist, 2016, 101(7), 1668.
17 Fraichard L. Nanotalcs fonctionnalis vers de nouveaux composites conducteurs. Ph. D. Thesis, University de Toulouse, FRA, 2012.
18 John W, Gruner. Zeitschrift für Kristallographie-Crystalline Materials, 2014, 99, 264.
19 Lei H L, Jiang S Y , Sun Y, et al. Mineral Deposits, 2012, 31(2), 241 (in Chinese).
雷焕玲, 蒋少涌, 孙岩, 等. 矿床地质, 2012, 31(2), 241.
20 Zhang L X, Ouyang Q S, Wu Z H. Resource Information and Enginee-ring, 2019, 34(6), 17 (in Chinese).
张连湘, 欧阳淇生, 巫志豪. 资源信息与工程, 2019, 34(6), 17.
21 Wang Y, Hu B Q, Li M G, et al. Conservation and Utilization of Mineral Resources, 2020, 40(6), 117 (in Chinese).
王运, 胡宝群, 李满根, 等. 矿产保护与利用, 2020, 40(6), 117.
22 Zhang L X, Zheng X, Ouyang Q S. Modern Mining, 2016, 32(5), 127 (in Chinese).
张连湘, 郑绪, 欧阳淇生. 现代矿业, 2016, 32(5), 127.
23 Wang Xianguang. Jiangxi Province geological exploration fund prospecting major breakthrough and scientific and technological innovation, Jiangxi Science and Technology Press, China, 2020, pp. 456(in Chinese).
王先广. 江西省地质勘查基金找矿重大突破与科技创新, 江西科学技术出社, 2020, pp. 456.
24 Lei H L, Jiang S Y, Sun Y, et al. Acta Mineralogica Sinica, 2011, 31(S1), 601(in Chinese).
雷焕玲, 蒋少涌, 孙岩, 等. 矿物学报, 2011, 31(S1), 601.
25 Chen Y M. Hunan Geology, 1992(1), 37 (in Chinese).
陈永明. 湖南地质, 1992(1), 37.
26 Bao Z X, Wang D S, Bao J M. Non-Metallic Minerals Industry, 2001(1), 38 (in Chinese).
鲍正湘, 王德生, 包觉敏. 中国非金属矿工业导刊, 2001(1), 38.
27 Bao Z X, Wan R J, Bao J M. Non-Metallic Mines, 2002(5), 53 (in Chinese).
鲍正湘, 万榕江, 包觉敏. 非金属矿, 2002(5), 53.
28 Xiao C H. JiangXi Geology, 1996(4), 304 (in Chinese).
肖承煌. 江西地质, 1996(4), 304.
29 Liu S D, Xiao K M, Zhou H J. China Non-metallic Minerals Industry, 1992(72), 27 (in Chinese).
刘盛鼎, 肖坤谟, 周洪健. 建材地质, 1992(72), 27.
30 Yang Y X, Deng C H. China Non-metallic Minerals Industry, 1991(4), 1 (in Chinese).
杨雅秀, 邓长虹. 建材地质, 1991(4), 1.
31 Tong H Y. China Non-metallic Minerals Industry, 1994(3), 30 (in Chinese).
童银洪. 建材地质. 1994(3), 30.
32 Li W L. Construction Materials Decoration, 2020(11), 221 (in Chinese).
李文林. 建材与装饰, 2020(11), 221.
33 Chen X B. China Steel Focus, 2019(15), 97 (in Chinese).
陈向波. 冶金管理, 2019(15), 97.
34 Li C X, Wang R C, Lu X C, et al. Applied Clay Science, 2013, 74, 37.
35 Wang R C, Li C X, Lu X C, et al. Minerals, 2013, 33(S1), 101.
36 Yao Z, Wu D, Heng J Y. Applied Clay Science, 2017, 141, 212.
37 Dellisanti F, Valdrè G, Mondonico M. Applied Clay Science, 2009, 42(3), 398.
38 Xu F F, Li J H, Wang Y C. Non-Metallic Mines, 2010, 33(6), 15 (in Chinese).
许芳芳, 李金洪, 王宇才. 非金属矿, 2010, 33(6), 15.
39 Chen Y, Lian X, Zheng S. Procedia Engineering, 2015, 102, 379.
40 Chen Y R, Li Z Y, Wang Z C, et al, Non-Metallic Mines, 2014, 37(5), 1 (in Chinese).
陈彦如, 李朝阳, 王泽朝, 等. 非金属矿, 2014, 37(5), 1.
41 Guo W H, Wang M H, Foshan Ceramics, 2014(5), 14 (in Chinese).
郭文华, 王明华. 佛山陶瓷, 2014(5), 14.
42 Chen Z G, Di S M, Zhu Q. Non-Metallic Mines, 1993(6), 6 (in Chinese).
陈正国, 邸素梅, 祝强. 非金属矿, 1993(6), 6.
43 Li Q, Wang M H. Foshan Ceramics, 2015, 25(1), 11 (in Chinese).
李济, 王明华. 佛山陶瓷, 2015, 25(1), 11.
44 Tian H, China Non-metallic Minerals Industry, 1991(5), 31(in Chinese).
田红. 建材地质, 1991(5), 31.
45 Song H B. China Non-metallic Minerals Industry, 2001(4), 19 (in Chinese).
宋海兵. 中国非金属矿工业导刊, 2001(4), 19.
46 Guo W H, Wang M H, Li J. Foshan Ceramics, 2012, 22(8), 9 (in Chinese).
郭文华, 王明华, 李济. 佛山陶瓷, 2012, 22(8), 9.
47 Wang M H, Li G, Li Q, Ceramics, 2012(9), 21 (in Chinese).
王明华, 李钢, 李济. 陶瓷, 2012(9), 21.
48 Ding S D, Dong Y M, Chen J J, et al. Cement Engineering, 2013(5), 9 (in Chinese).
丁苏东, 董益名, 陈晶晶, 等. 水泥工程, 2013(5), 9.
49 Qiu L L, Zhang P P, Chen X G, et al, Bulletin of the Chinese Ceramic Society, 2017, 36(6), 1811.
裘林莉, 张平萍, 陈雪刚, 等. 硅酸盐通报, 2017, 36(6), 1811 (in Chinese).
50 Fiorentino B, Fulchiron R, Bounor-Legaré V, et al. Applied Clay Science, 2015, 109-110(10), 107.
51 Di H W, Song B X. China Non-metallic Minerals Industry, 2010(3), 9 (in Chinese).
狄宏伟, 宋宝祥. 中国非金属矿工业导刊, 2010(3), 9.
52 Ye J, Li H M. Non-Metallic Mines, 2004, 27(1), 40 (in Chinese).
叶菁, 李宏敏. 非金属矿, 2004, 27(1), 40.
53 Wu H Y. Ceramic Studies, 1992(2), 70 (in Chinese).
吴汉阳. 陶瓷研究, 1992(2), 70.
54 Xue Y H, Guo T T, Xue Z. Multipurpose Utilization of Mineral Resources, 2011(6), 34 (in Chinese).
薛彦辉, 郭婷婷, 薛真. 矿产综合利用, 2011(6), 34.
55 Xiong L . Preliminary study on porcelain sanitary ceramics of coal gangue-black talc-bauxite with low expansion and high infrared ability. Master's Thesis, Jing De Zhen Ceramic University, China, 2013 (in Chinese).
熊里. 煤矸石-黑滑石-铝矾土制备低膨胀高红外瓷质卫生陶瓷的初步研究. 硕士学位论文, 景德镇陶瓷学院, 2013.
56 Liu B Y, Wang M Y, Fang Q S. China Non-metallic Minerals Industry, 1999(11), 55 (in Chinese).
刘伯元, 王明洋, 方庆生. 中国非金属矿工业导刊, 1999(11), 55.
57 Meli G, Jouffret F, Kochesfahani S. Kgk-Rubberpoint, 2009, 62, 657.
58 Xu Z S. Study on black talc reinforcing chloroprene rubber and its mechanism. Master's Thesis, Hebei University of Technology, China, 2019 (in Chinese).
许子帅. 黑滑石补强氯丁橡胶及其机理的研究. 硕士学位论文, 河北工业大学, 2019.
59 Liang J Z, Yang Q Q. Joumal of Reinforced Plastics and Composites, 2008, 28(3), 295.
60 Hazwani D H, Ahmad F, Uliah S, et al. Applied Clay Science, 2017, 146, 350.
61 Lin C, Chang F, Perng Y, et al. Advances in Materials Science and Engineering, 2016, l, 4863024.
62 Qin W L. Synthesis of composites based on black talc and their applications as functional materials. Ph. D. Thesis, Zhe Jiang University, China, 2018 (in Chinese).
秦文莉. 基于黑滑石的复合材料制备及其在功能材料领域的应用研究. 博士学位论文, 浙江大学, 2018.
63 Abou-Gamra Z M, Ahmed M A. Journal of Photochemistry and Photobio-logy Biology, 2016, 160, 134.
64 Damardji B, Khalaf H, Duclaux L, et al. Applied Clay Science, 2009, 44(3), 201.
65 Almeida M F, Bellata C R, MounteerA H, et al. Applied Surface Science, 2015, 357, 1765.
66 Shuai H, Wang Y, Wang J, et al. Materials. 2021, 14(20), 6038.
67 Mariana M, Feiteiro J, Verde I, et al. Environment International, 2016, 94, 758.
68 Adeel M, Song X, Wang Y, et al. Environment International, 2017, 99, 107.
69 Yang Y, Wang P. Journal of Hazardous Materials, 2009, 168(1), 238.
70 Qin W L, Xia T, Ye Y, et al. Royal Society Open Science. 2018, 5(2), 1.
71 Chen J, Wei X, Liu Y, et al. Science of the Total Environment, 2016, 565, 240.
72 Chen D Y, Bai Q, Ma T T, et al. Chemical Engineering Journal, 2022, 435, 134916.
73 Wang Y T, Guan Y D, Li Y Z, et al. Process Safety and Environmental Protection, 2021, 149, 123.
74 Wang P P , Yuan Q X, et al. Chemical Engineering Journal, 2021, 410, 128327.
75 Peng S M, Wei S G, Shuai H. Journal of Beijing Polytechnic College, 2022, 21(2), 39 (in Chinese).
彭淑梅, 魏树国, 帅欢. 北京工业职业技术学院学报, 2022, 21(2), 39.
76 Wu X W, Zhao H, Zhang Z J, et al. Journal of Ceramics, 2017, 38(4), 476(in Chinese).
吴小文, 赵航, 张之介, 等. 陶瓷学报, 2017, 38(4), 476.
77 Fan P, Liu H, Liao L B, et al. Electrochim Acta, 2018, 289, 407.
78 Bahiraei H, Ong C K. Ceramics Intemational, 2017, 43(6), 4780.
79 Gabal M, A1-Juaid A, A1-Rashed S M, et al. Journal of Magnetism and Magnetic Materials, 2017, 426, 670.
80 Zhou J, He J, Li G, et al. The Journal of Physical Chemistry C, 2010, 114(17), 7611.
81 Drmota A, Koselj J, Drofenik M, et al. Journal of Magnetism and Magnetic Materials, 2012, 324(6), 1225.
82 ChenX, Ye Y, Chen J. Journalof Inorganic Materials, 2011, 26(5), 449.
83 Wu Z P, Li M M, Hu Y Y, et al. Scripta Materialia, 201l, 64(9), 809.
84 蒋里军. 中国专利, CN1168795, 1997
85 Ye Y, Zhou Y H, Xia M S, et, al. Journal of Inorganic Materials. 2003, 18(3), 569 (in Chinese).
叶瑛, 周玉航, 夏枚生, 等. 无机材料学报, 2003, 18(3), 569.
86 Qiu L L, Zhang P P, Chen X G, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(6), 1811 (in Chinese).
裘林莉, 张平萍, 陈雪刚, 等. 硅酸盐通报, 2017, 36(6), 1811.
87 许涛亮, 张娅, 刘燕, 等. 中国专利, CN109851320A, 2019.
88 刘一军, 杨元东, 杨倩. 中国专利, CN111517649B, 2021.
89 官文刚. 中国专利, CN111467264A, 2020.
[1] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[2] 贾峰峰, 俄松峰, 陈珊珊, 宁逗逗, 黄吉振, 陆赵情. 碳纤维湿法造纸工艺及碳纤维纸基功能材料的研究进展[J]. 材料导报, 2023, 37(8): 21070135-9.
[3] 吕晓书, 王霞玲, 蒋光明, 熊昆, 汪小莉, 张贤明. 纳米零价铁基材料去除水中硝酸盐污染的研究进展[J]. 材料导报, 2023, 37(4): 21010052-10.
[4] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[5] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[6] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[7] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[8] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[9] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[10] 李庆鹏, 刘利冉, 张亮, 王丽, 管勇, 王娜. 水性锌基涂镀涂层的制备及性能研究[J]. 材料导报, 2023, 37(11): 21110102-6.
[11] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[12] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[13] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[14] 庄思杰, 龙柱, 张丹, 孙昌. 亲水性聚酯纤维对衬垫纸制备及其性能的影响[J]. 材料导报, 2022, 36(5): 20110181-6.
[15] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed