Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 22030058-6    https://doi.org/10.11896/cldb.22030058
  高分子与聚合物基复合材料 |
“一步法”构建基于Zn2+的抗菌表面
郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬*
西南交通大学材料科学与工程学院,成都 610031
‘One-step’ Construction of Zn2+-based Antibacterial Surface
GUO Yuanlai, MIAO Wan, QIAN Jidong, XIONG Kaiqin, TU Qiufen*
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 17762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不依赖于抗生素的抗菌表面是生物材料及器械设计领域的重要研究内容,可以避免耐药性细菌问题。现有材料表面抗菌策略仍然存在步骤较为繁琐、反应条件过于苛刻等不足,因此,本研究以多巴胺和硫酸锌(ZnSO4)为原料,在常温、水相条件下采用“一步法”构建广谱性含锌聚多巴胺抗菌涂层(PDA@Zn)。水接触角、涂层厚度和X光电子能谱等结果证实PDA@Zn涂层成功构建。涂层中的锌以Zn2+的形式与PDA中邻苯二酚官能团配位结合;涂层的表面Zn2+密度可以通过改变ZnSO4投料的浓度来调控。抗菌实验的结果表明ZnSO4投料浓度为1 mg/mL时所构建的PDA@Zn涂层(PDA@Zn/1)具有优异的杀菌效果,对大肠杆菌和表皮葡萄球菌的抗菌率分别为99.7%和99.3%。体外细胞培养试验结果表明,PDA@Zn/1涂层上L929的24 h和72 h相对增殖率分别为63.63%及48.32%,具有一定的细胞毒性。该方法提供了一种高效、简单的表面抗菌策略,但该策略的生物相容性还有待进一步提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭远来
缪婉
钱继东
熊开琴
涂秋芬
关键词:  锌(Zn)  聚多巴胺(PDA)  表面改性  抗菌性能    
Abstract: Antibiotic-independent antibacterial surfaces are important research to avoid the problem of antimicrobial-resistant bacteria in the field of biomaterial and device design. Unfortunately, existing surface antibacterial strategies still have shortcomings, such as cumbersome steps and harsh reaction conditions. Therefore, in this study, a broad-spectrum antibacterial coating containing zinc polydopamine (PDA@Zn)was constructed in a ‘one-step’ process using dopamine and zinc sulfate (ZnSO4)as raw materials under normal temperature and aqueous phase conditions. The results of water contact angle, thickness of coating and XPS confirmed the successful construction of the PDA@Zn coating. The Zn in the coating is ligand-bound to the catechol functional group in PDA in the form of Zn2+;the surface Zn2+ density can be controlled by adjusting the feeding concentration of ZnSO4. The results of antibacterial experiments showed that the PDA@Zn/1 constructed at a ZnSO4 feeding concentration of 1 mg/mL had excellent bactericidal effect, with 99.7% and 99.3% antibacterial rates against E.coli and S.epidermidi, respectively. The results of in vitro cell culture assay showed that the RGR of L929 on PDA@Zn/1 coating at 24 h and 72 h were 63.63% and 48.32%, respectively, with some cytotoxicity. This method provides an efficient and simple surface antibacterial strategy, but its biocompatibility needs to be further improved.
Key words:  zinc    polydopamine (PDA)    surface modification    antibacterial property
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TB34  
  TB324  
基金资助: 四川省国际合作项目(2021YFH0056;2019YFH0103);中央高校基金(2682021ZTPY002)
通讯作者:  * 涂秋芬,西南交通大学材料科学与工程学院副教授、硕士研究生导师,2003年毕业于兰州大学获硕士学位,2007年毕业于四川大学获博士学位。现主要研究方向:(1)生物材料及器械的研发;(2)材料表面工程。以第一作者及通信作者在Bioactive Materials、Biomaterials、Applied Materials Today、Materials Chemistry Frontiers、Materials & Design等高水平期刊上发表多篇SCI论文;申请发明专利20余项,授权15余项。tuqiufen@swjtu.edu.cn   
作者简介:  郭远来,2019年6月毕业于四川大学,获得工学学士学位。现就读于西南交通大学生物医学工程专业,攻读硕士学位,主要的研究方向是材料表面改性。
引用本文:    
郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
GUO Yuanlai, MIAO Wan, QIAN Jidong, XIONG Kaiqin, TU Qiufen. ‘One-step’ Construction of Zn2+-based Antibacterial Surface. Materials Reports, 2023, 37(12): 22030058-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030058  或          http://www.mater-rep.com/CN/Y2023/V37/I12/22030058
1 Roope L S J, Smith R D, Pouwels K B, et al. Science, 2019, 364(6435), 41.
2 Piddock L J V. Nature Reviews Microbiology, 2017, 15(11), 639.
3 Nathan C. Nature Reviews Microbiology, 2020, 18(5), 259.
4 Peng L Y, Chang L, Liu X, et al. ACS Applied Materials & Interfaces, 2017, 9(21), 17688.
5 Shahkaramipour N, Lai C K, Venna S R, et al. Industrial & Engineering Chemistry Research, 2018, 57(6), 2336.
6 Shahkaramipour N, Tran T N, Ramanan S, et al. Membranes, 2017, 7(1), 13.
7 Bhardwaj A, Pandey L M. Materials Letters, 2022, 311, 131574.
8 Xiao Y, Wang W X, Tian X H, et al. Research, DOI:10. 34133/2021/9864698.
9 Xu G, Liu P, Pranantyo D, et al. Industrial & Engineering Chemistry Research, 2017, 56(49), 14479.
10 Malik F, Mehdi S F, Ali H, et al. Diabetes-Metabolism Research and Reviews, 2018, 34, e2975.
11 Jiang R J, Yi Y Z, Hao L W, et al. ACS Applied Materials & Interfaces, 2021, 13(51), 60865.
12 Pandit S, Gaska K, Mokkapati V, et al. Small, 2020, 16, 1904756.
13 Hazell G, Fisher L E, Murray W A, et al. Journal of Colloid and Interface Science, 2018, 528, 389.
14 Ji X W, Liu P T, Tang J C, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(12), 3821.
15 Li X L. Physical Chemistry Chemical Physics, 2016, 18(2), 1311.
16 Koller M, Ziegler N, Sengstock C, et al. Biomedical Physics & Engineering Express, 2018, 4(5), 055002.
17 Kapat K, Maity P P, Rameshbabu A P, et al. Journal of Materials Chemistry B, 2018, 6(18), 2877.
18 Wandiyanto J V, Tamanna T, Linklater D P, et al. Journal of Colloid and Interface Science, 2020, 560, 572.
19 Ivanova E P, Linklater D P, Werner M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23), 12598.
20 Sheldon J R, Skaarl E P. Current Opinion in Immunology, 2019, 60, 1.
21 Roy S, Rhim J W. International Journal of Biological Macromolecules, 2020, 148, 666.
22 Faisal S, Jan H, Shah S A, et al. ACS Omega, 2021, 6(14), 9709.
23 Jiang R J, Hao L W, Song L J, et al. Chemical Engineering Journal, 2020, 398, 125609.
24 Liu J Y, Li H X, Li H Z, et al. Journal of Medicinal Chemistry, 2021, 64(14), 10429.
25 Grillner S, Robertson B. Current Biology, 2016, 26(20), R1088.
26 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426.
27 Huang Q, Chen J Y, Liu M Y, et al. Chemical Engineering Journal, 2020, 387, 124019.
28 Hong S, Wang Y, Park S Y, et al. Science Advances, 2018, 4(9), eaat7457.
29 Li G, Yang P, Liao Y, et al. Biomacromolecules, 2011, 12(4), 1155.
30 Zhou Z Y, Tian N, Li J T, et al. Chemical Society Reviews, 2011, 40(7), 4167.
31 Claros M, Setka M, Jimenez Y P, et al. Nanomaterials, 2020, 10(3), 471.
32 Huang Y, Gao Q, Li C, et al. Advanced Functional Materials, 2021, 32(15), 2109011.
33 Strohmeier B R, Hercules D M. Journal of Catalysis, 1984, 86(2), 266.
[1] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[2] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[3] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[4] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[5] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[6] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[7] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[8] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[9] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[10] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[11] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[12] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[13] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[14] 尹艳丽, 于鹤龙, 王红美, 魏敏, 史佩京, 白志民, 张伟, 徐滨士. 表面改性海泡石纳米纤维作为润滑油添加剂的摩擦学行为[J]. 材料导报, 2021, 35(14): 14017-14024.
[15] 朱志强, 王庆平, 闵凡飞, 薛婷婷, 卢春阳, 刘玉新. SiCp/Al复合材料界面调控研究进展[J]. 材料导报, 2021, 35(13): 13139-13147.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed