Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20120062-7    https://doi.org/10.11896/cldb.20120062
  无机非金属及其复合材料 |
基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池
王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑
昆明理工大学冶金与能源工程学院,云南省先进电池材料重点实验室,锂离子电池及材料制备技术国家地方联合工程实验室,昆明 650093
High Performance Li-CO2 Battery Based on Nitrogen-doped Carbon Nanotubes Loaded with Ultrafine Ir Nanoparticles
WANG Zhen, GU Yang, WU Hongkun, LI Xue, ZENG Xiaoyuan
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 5580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着能源需求的增长和环境问题的恶化,寻找一种新的环境友好型的储能转换装置已成必然。Li-CO2电池由于具有能捕获CO2并将其转化为电能的特性,成为了当前的研究热点之一。然而,Li-CO2电池目前还存在过电位高、循环性能差等问题与挑战。因此,本工作首次通过简单的溶剂热法合成了一种超细Ir纳米颗粒并将其均匀负载到氮掺杂碳纳米管上(N-CNTs),作为Li-CO2电池的高效催化阴极。得益于N-CNTs与超细Ir纳米颗粒的协同作用,N-CNTs交联而成的3D多孔道碳骨架结构保证了CO2、离子和电子的传输,并且为放电产物的沉积和分解提供了空间;超细Ir纳米颗粒催化剂的均匀分布提高了催化活性并调节了放电产物的形貌。采用Ir/N-CNTs阴极催化剂提高了Li-CO2电池的库仑效率(72%),延长了电池的循环寿命(160圈/1 600 h),降低了过电势(1.2 V)。另外,设计了一个简单的放电产物形核机理示意图以深入探讨充放电过程中Li2CO3的形成与分解。本工作推动了催化剂设计的进一步研究,并为开发高性能Li-CO2电池提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王朕
顾洋
吴宏坤
李雪
曾晓苑
关键词:  Li-CO2电池  氮掺杂碳纳米管  铱纳米颗粒  催化剂    
Abstract: With the surge of energy demand and aggravation of environmental problems, it is necessary to find a new environment-friendly energy sto-rage conversion device. Li-CO2 battery has become a research hot spot because it can absorb and convert CO2 into electricity. However, there are still some problems and challenges in Li-CO2 battery, such as high overpotential and poor cycle performance. In this work, a kind of cathode/catalyst composite with ultrafine Ir nanoparticles uniformly loaded on nitrogen doped carbon nanotubes was synthesized for the first time by a simple solvothermal method, as a high efficiency cathode for Li-CO2 battery. N-CNTs and ultrafine Ir nanoparticles were synergetic catalysis for which the 3D porous channel carbon skeleton structure cross-linked by N-CNTs ensured the transport of CO2, ions and electrons and provides space for the deposition and decomposition of discharge products. The uniform distribution of ultrafine Ir nanoparticles improved the catalytic activity and regulated the morphology of discharge products. Therefore, the coulomb efficiency (72%), cycle life (160 cycles/1 600 h) and over potential (1.2 V) of Li-CO2 battery with Ir/N-CNTs cathode catalyst were improved. Moreover, a simple schematic diagram of the nucleation mechanism of the discharge products was designed to show the formation and decomposition of Li2CO3 in the process of discharge and charge. This work inspires further research on catalyst design and provides a new idea for the development of high performance Li-CO2 battery.
Key words:  Li-CO2 battery    nitrogen-doped carbon nanotubets    Ir nanoparticles    catalyst
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  :O646  
基金资助: 国家自然科学基金(51904130)
通讯作者:  zengxiaoyuan721@126.com   
作者简介:  王朕,昆明理工大学,2021年获得硕士研究生学位,研究方向为锂-空气电池。
曾晓苑,博士,昆明理工大学冶金与能源工程学院教授,锂离子电池及材料制备技术国家地方联合工程实验室副主任。2015年获华南理工大学化学与化工学院博士学位、加拿大韦仕敦大学博士后。主要从事冶金物理化学及先进电池材料的研究和教学工作。发表学术论文60余篇,其中以第一作者或通讯作者发表论文30篇;独立出版学术专著2本,共计83万字;申请国家专利16件,获得专利授权4件。
引用本文:    
王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
WANG Zhen, GU Yang, WU Hongkun, LI Xue, ZENG Xiaoyuan. High Performance Li-CO2 Battery Based on Nitrogen-doped Carbon Nanotubes Loaded with Ultrafine Ir Nanoparticles. Materials Reports, 2022, 36(8): 20120062-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120062  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20120062
1 Shakun J D, Clark P U, He F, et al. Nature,2012,484,49.
2 Li X, Yang S, Feng N, et al. Chinese Journal of Catalysis,2016,37,1016.
3 Kim T, Song W, Son D, et al. Journal of Materials Chemistry A,2019,7,2942.
4 Liu B, Sun Y, Liu L, et al. Energy & Environmental Science,2019,12,887.
5 Xu S, Das S K, Archer L A. RSC Advances,2013,3(18),6656.
6 Liu Y, Wang R, Lyu Y, et al. Energy & Environmental Science,2014,7,677.
7 Zhang X, Zhang Q, Zhang Z, et al. Chemical Communications,2015,51,14636.
8 Zhang Z, Zhang Q, Chen Y, et al. Angewandte Chemie-International Edition,2015,54(22),6550.
9 Xing W, Li S, Du D, et al. Electrochimica Acta,2019,10(311),41.
10 Qie L, Lin Y, Connell J W, et al. Angewandte Chemie-International Edition,2017,56(24),6970.
11 Li X, Zhou J, Zhang J, et al. Advanced Materials,2019,31,1903852.
12 Hu X, Luo G, ZhaO Q, et al. Journal of the American Chemical Society,2020,142(39),16776.
13 Zhang Y J, Li X, Zhang M Y, et al. Ceramics International,2017,43,14082.
14 Tong S, Zheng M, Lu Y, et al. Chemical Communications,2015,51,7302.
15 Li F, Chen Y, Tang D, et al. Energy & Environmental Science,2014,7,1648.
16 Yang S, Qiao Y, He P, et al. Energy & Environmental Science,2017,10,972.
17 Wang C, Zhang Q, Zhang X, et al. Small,2018,14,1800641.
18 Xing Y, Yang Y, Li D, et al. Advanced Materials,2018,30,1803124.
19 Wang L, Dai W, Ma L, et al. ACS Omega,2017,2,9280.
20 Bie S, Du M, He W, et al. ACS Applied Materials & Interfaces,2019,11,5146.
21 Qiao Y, Xu S, Liu Y, et al. Energy & Environmental Science,2019,12,1100.
22 Wu G, Li X, Zhang Z, et al. Journal of Materials Chemistry A,2020,8,3763.
23 Song L, Wang T, Wu C, et al. Chemical Communications,2019,55,12781.
24 Yang Y, Jin S, Zhang Z, et al. ACS Applied Materials and Interfaces,2017,9,14180.
25 Wu J, Liu M, Sharma P, et al. Nano Letters,2016,16,466.
26 Lyu Z, Yang L, Luan Y, et al. Nano Energy,2017,36,68.
27 Lyu Z, Zhou Y, Dai W, et al. Chemical Society Reviews,2017,46,6046.
28 Ramaswamy N, Mukerjee S. Chemical Reviews,2019,119,11945.
[1] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[2] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[3] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[4] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[5] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[6] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[7] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[8] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[9] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[10] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[11] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[12] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[13] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[14] 穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
[15] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed