Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20050117-9    https://doi.org/10.11896/cldb.20050117
  高分子与聚合物基复合材料 |
纤维增强树脂基复合材料超高周疲劳研究进展
吴涛1, 姚卫星1,2, 黄杰1
1 南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京 210016
2 南京航空航天大学机械结构力学及控制国家重点实验室,南京 210016
Recent Development of Research on Very High Cycle Fatigue of Fiber Reinforced Plastic
WU Tao1, YAO Weixing1,2, HUANG Jie1
1 Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
2 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 11128KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维增强树脂基复合材料(Fiber reinforced plastic, FRP)具有强度高、密度低、抗疲劳、可设计性强等优点,自被开发以后便迅速在航空航天等现代工程领域得到广泛应用。随着对FRP失效机理研究的深入及工程设计水平的提高,工程中FRP材料的设计许用值逐渐提高,FRP材料的疲劳问题变得不容忽视。尤其是高铁、飞机结构中的FRP材料,常常由于气动原因承受着高频振动载荷,从而引发FRP材料的超高周疲劳(Very high cycle fatigue, VHCF)失效问题。
对FRP材料的超高周疲劳问题的研究主要分为四个方面:(1)FRP超高周疲劳试验方法;(2)FRP超高周疲劳损伤机理;(3)FRP超高周疲劳性能曲线特征;(4)FRP超高周疲劳寿命预测方法。其中疲劳试验方法为研究提供基本试验数据,是所有研究中最基础的部分。FRP超高周疲劳试验技术主要沿用金属材料的超高周疲劳试验方法,但由于FRP材料阻尼大、导热性差且对温度敏感,难以直接提高试验的加载频率。目前,主要采用减小试验件厚度、间歇加载以及强制冷却等手段来控制试验件温度,从而提高加载频率,缩短FRP超高周疲劳试验时间。超高周疲劳与常规疲劳的本质差别在于疲劳损伤机理的差异。超高周疲劳载荷下,FRP材料的基体裂纹损伤可能转变为局部点蚀,并且分层损伤可能先于基体裂纹萌生,这与典型的“三阶段”损伤演化过程有所不同。超高周疲劳载荷下,FRP材料的S-N曲线也表现出三种不同形式,分别对应存在疲劳极限、疲劳强度持续下降以及疲劳强度阶梯式下降三种情况。FRP超高周疲劳寿命预测方法主要沿用FRP常规疲劳寿命预测方法,其中基体裂纹密度方法可以降低对超高周试验数据的依赖程度。目前对FRP超高周疲劳损伤演化及性能曲线等问题的研究停留在对试验结果的观察阶段,缺乏系统的总结与研究。
本文回顾了FRP材料超高周疲劳问题的研究进展,对FRP超高周疲劳研究的四个方面的内容进行了详细介绍。通过对现有研究成果进行对比分析,提出了FRP超高周疲劳需要深入研究的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴涛
姚卫星
黄杰
关键词:  纤维增强树脂基复合材料  超高周疲劳  疲劳试验方法  疲劳损伤演化  疲劳寿命预测    
Abstract: Since the early development, fiber reinforced plastic (FRP) materials have been widely used in aerospace and other modern engineering fields due to their advantages of high strength, low density, anti-fatigue property and excellent designability. With the in-depth study of FRP failure mechanism and the improvement of design level, the design admissibility of FRP materials in engineering has been gradually enhanced, and the fatigue problem of FRP materials can not be ignored anymore. In particular, the FRP materials in high-speed railway and aircraft structures often bear high-frequency vibration load due to aerodynamic force, which leads to very high cycle fatigue (VHCF) failure of FRP materials.
The research on very high cycle fatigue of FRP mainly focuses on the four aspects, VHCF test methods, VHCF damage mechanism, the cha-racteristics of VHCF performance curve and VHCF life prediction methods. Among them, the fatigue test methods provide basic test data, which is the most fundamental part of the research work. The VHCF tests of FRP mainly adopt the VHCF test methods of metallic materials. However, due to the large damping, poor thermal conductivity and high temperature sensitivity of FRP materials, it is difficult to directly increase the load frequency in FRP VHCF tests. At present, it is mainly by reducing the thickness of the specimen, applying intermittent load and cooling that the control of specimen temperature is carried out, with the load frequency increased and the test time of VHCF shortened. The essential difference between VHCF and conventional fatigue lies in the difference of fatigue damage mechanism. Under very high cycle fatigue load, the matrix crack damage of FRP materials may be transformed into local pitting corrosion, and the delamination damage may initiate before the matrix crack, which is different from the typical three-stage damage evolution process. Under the very high cycle fatigue load, the S-N curve of FRP materials also shows three different forms, respectively corresponding to the existence of fatigue limit, continuous decrease of fatigue strength and step-like decrease of fatigue strength. The VHCF life prediction methods of FRP mainly follow the conventional non-VHCF fatigue life prediction methods, in which the matrix crack density methods have a reduced dependence on the very high cycle fatigue experiment data. At present, the research on damage evolution and performance curve of FRP materials under VHCF is limited to the observation-dominant methods , which lacks systematic research and summary.
In this paper, the recent research of very high cycle fatigue of FRP is reviewed, and the above-mentioned four aspects have been introduced in detail. Based on the comparative analysis of existing research results, the problems of very high cycle fatigue of FRP that need to be further stu-died have been put forward.
Key words:  fiber reinforced plastic(FRP)    very high cycle fatigue    fatigue test methods    fatigue damage evolution    fatigue life prediction
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52002181)
通讯作者:  wxyao@nuaa.edu.cn   
作者简介:  吴涛,2015年9月毕业于南京航空航天大学,获得工学学士学位。2021年6月毕业于南京航空航天大学,获得工学博士学位。目前于南京航空航天大学能源与动力学院从事博士后研究工作,主要研究领域为飞行器结构设计及先进复合材料结构设计。
姚卫星,1982年5月毕业于西北工业大学,获得工学学士学位。1984年5月毕业于西北工业大学,获得工学硕士学位。1988年5月毕业于西北工业大学,获得工学博士学位。目前任南京航空航天大学教授、博士研究生导师。主要从事复合材料结构制造-工艺一体化设计、飞行器的总体-气动-结构的综合设计技术、结构抗疲劳设计等领域研究。共发表学术论文150多篇,出版专著、教材3部。
引用本文:    
吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
WU Tao, YAO Weixing, HUANG Jie. Recent Development of Research on Very High Cycle Fatigue of Fiber Reinforced Plastic. Materials Reports, 2022, 36(6): 20050117-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050117  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20050117
1 Lu J G. Multiaxial fatigue life prediction in HCF including non-proportional hardening. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese).
陆建国. 考虑非比例附加强化的多轴高周疲劳寿命预测方法. 硕士学位论文,南京航空航天大学, 2012.
2 Wang M Z. Research on life analysis method for structure vibration fatigue. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2009 (in Chinese).
王明珠. 结构振动疲劳寿命分析方法研究. 博士学位论文,南京航空航天大学, 2009.
3 Zhou C E, Xie J J, Hong Y S. Journal of Mechanical Strength, 2004(5), 526(in Chinese).
周承恩,谢季佳,洪友士.机械强度, 2004(5),526.
4 Li Z B.Journal of Harbin Institute of Technology, 2000(1), 82(in Chinese).
李治彬.哈尔滨工业大学学报, 2000(1),82.
5 Kikukawa M, Ohji K, Ogura K. Transactions of the Japan Society of Mechanical Engineers, 1965, 32(235),363.
6 Naito T, Ueda H, Kikuchi M.Metallurgical Transactions A, 1984,15,1431.
7 Naito T, Ueda H, Kikuchi M.Journal of the Society of Materials Ence Japan. 1983, 32(361),1162.
8 Hong Y S, Sun C Q, Liu X L.Advances in Mechanics. 2018, 48 (1), 65(in Chinese).
洪友士,孙成奇,刘小龙. 力学进展. 2018, 48 (1), 65.
9 Liu X L, Sun C Q, Zhou Y T, et.al. Acta Metallurgica Sinica. 2016, 52(8),923(in Chinese).
刘小龙,孙成奇,周砚田,等. 金属学报. 2016, 52(8),923.
10 Hong Y S, Zhao A G, Qian G A. Acta Metallurgica Sinica. 2009, 45(7),769(in Chinese).
洪友士,赵爱国,钱桂安.金属学报. 2009, 45(7),769.
11 Hong Y S, Fang S.Advances in Mechanics, 1993, 23(4),468(in Chinese).
洪友士,方飚.力学进展, 1993, 23(4),468.
12 Cheng L.Very high cycle fatigue and fracture. National Defense Industry Press, China,2016,pp.13(in Chinese).
程礼. 超高周疲劳与断裂. 国防工业出版社, 2016,pp.13.
13 Liu H Q, He C, Huang Z Y. Acta Metallurgica Sinica, 2017, 53(9), 1047 (in Chinese).
刘汉青,何超,黄志勇,等.金属学报, 2017, 53(9), 1047.
14 Huang Z Y, Wang Q Y. Journal of Sichuan University (Engineering Science Edition),2012, 44(5),195(in Chinese).
黄志勇,王清远.四川大学学报(工程科学版), 2012, 44(5), 195.
15 Wang Q Y, Liu Y J.Acta Mechanica Solida Sinica, 2010, 31(5), 496(in Chinese).
王清远,刘永杰. 固体力学学报, 2010, 31(5), 496.
16 Kensche C W.Wind Turbines; Fatigue ; Composites,1992, 17,75.
17 Mandell J F, Reed R M, Samborsky D D, et al.Wind Energy, 1993, 14,191.
18 Creed R F. High cycle tensile fatigue of unidirectional fiberglass composite tested at high frequency. Master's Thesis, Mnotana State University, America, 1993.
19 Wu T, Yao W, Xu C.Composite Structures, 2021, 256,113037.
20 Wu T, Yao W, Xu C, et al.International Journal of Fatigue, 2020, 134, 105398.
21 Gude M, Hufenbach W, Koch I, et al.Procedia Materials Science, 2013, 2(11), 18.
22 Adam T J. Materialprufung, 2012, 54, 734.
23 Yoshi T, Okubo K, Fujii T.Advanced Materials Research,2010, 123-125,217.
24 Silvain A M, Rolf K, Hans J M, et al.International Journal of Fatigue, 2006, 28(3), 261.
25 Backe D, Balle F, Eifler D T.Key Engineering Materials,2016, 664, 47.
26 Backe D, Balle F, Eifler D T. Composites Science & Technology,2015, 106, 93.
27 Backe D, Balle F.Composites Science & Technology, 2016, 126, 115.
28 Cui W, Chen X, Chen C, et al.Materials,2020, 13(4), 908.
29 Relea E.International Journal of Automation Technology, 2020,14(2),311.
30 Dominic W, Frank B, Daniel B.Key Engineering Materials, 2017, 742, 621.
31 Cui W B, Chen X, Chen C, et al. Acta Aeronautica ET Astronautica Sinica, 2020, 41(1),203(in Chinese).
崔文斌,陈煊,陈超,等. 航空学报, 2020, 41(1), 203.
32 Chen C, Chen X, Cheng L. Journal of Vibration and Shock, 2019, 38(12), 239(in Chinese).
陈超,陈煊,程礼.振动与冲击, 2019, 38(12), 239.
33 Hu Y H, Zhang Z, Zhong Q P, et al. Journal of Mechanical Strength, 2009, 31(6), 979(in Chinese).
胡燕慧,张峥,钟群鹏,等.机械强度,2009, 31(6),979.
34 Guan X, Meng Y J.Research on Iron and Steel, 2009, 37(1), 58(in Chinese).
关昕,孟延军. 钢铁研究, 2009, 37(1), 58.
35 He B L,Wei K. Materials Reports B: Research Papers, 2015, 29(7), 134(in Chinese).
何柏林,魏康. 材料导报:研究篇, 2015, 29(7),134.
36 Zhou L, Song Y N, Wang H D, et al. Materials Reports A: Review Papers, 2017, 31(9), 84(in Chinese).
周磊,宋亚南,王海斗,等. 材料导报:综述篇, 2017, 31(9), 84.
37 Hosoi A, Sato N, Kusumoto Y, et al.International Journal of Fatigue, 2010, 32(1), 29.
38 Wu T, Wei X Y, Xu C. International Journal of Fatigue, 2018,14,51.
39 Adam T J, Horst P.Composites Science & Technology, 2014, 101(8),62.
40 Adam T J, Horst P.Materials, 2018,11(1),98.
41 Apinis R.Mechanics of Composite Materials, 2004, 40(2), 107.
42 Bao X C, Cheng L, Chen X, et al. Journal of Mechanical Strength, 2019, 41(4), 858(in Chinese).
鲍学淳,程礼,陈煊,等. 机械强度,2019, 41(4), 858.
43 Hosoi A, Arao Y, Kawada H T.Composites Science & Technology, 2009, 69(9), 1388.
44 Hosoi A. Advanced Composite Materials,2007, 16(2),151.
45 Adam T J, Horst P.International Journal of Fatigue,2017, 99, 202.
46 Hashin Z.Composites Science & Technology,1985, 23(1), 1.
47 Mu P G, Wan X P, Zhao M Y.Mechanical Science and Technology for Aerospace Engineering,2010, 29(4), 441(in Chinese).
穆朋刚,万小朋,赵美英. 机械科学与技术,2010, 29(4), 441.
48 Yang Z Q. Research on fatigue behavior of glass fiber reinforced polymer composites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2008(in Chinese).
杨忠清. 玻璃纤维增强树脂基复合材料疲劳行为研究. 博士学位论文,南京航空航天大学, 2008.
49 Wu F Q. Research on life prediction and fatigue property degradation of the fibre-reinforced plastics. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2008 (in Chinese).
吴富强. 纤维增强复合材料寿命预测与疲劳性能衰减研究. 博士学位论文,南京航空航天大学, 2008.
50 Qiu R, Wen W D, Cui H T. Journal of Materials Science and Enginee-ring, 2013, 31(5), 108(in Chinese).
邱睿,温卫东,崔海涛. 材料科学与工程学报, 2013, 31(5), 108.
51 Shirazi A, Varvani-Farahani A.Applied Composite Materials, 2010, 17(2),137.
52 Zhai H J. Analysis of stiffness reduction in a notched FRP laminate under fatigue loading. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2001 (in Chinese).
翟洪军. 含缺口复合材料层合板疲劳刚度退化分析. 硕士学位论文,南京航空航天大学, 2001.
[1] 沙建芳, 夏中升, 刘建忠, 郭飞, 徐海源. 超高强水泥基灌浆材料疲劳性能研究综述[J]. 材料导报, 2021, 35(11): 11013-11026.
[2] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[3] 肖敏, 罗迎社, 司家勇, 刘秀波. 金属非对称循环下的匀变速加载问题[J]. 《材料导报》期刊社, 2018, 32(4): 676-680.
[4] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[5] 高古辉, 陈倩如, 郭浩冉, 程骋, 白秉哲. 贝/马复相钢超高周疲劳行为及非夹杂起裂*[J]. 《材料导报》期刊社, 2017, 31(20): 48-52.
[6] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[7] 周磊, 宋亚南, 王海斗, 李国禄, 张建军. 超高周疲劳的影响因素及疲劳机理的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 84-89.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed