Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 156-159    
  无机非金属及其复合材料 |
透明超疏水涂层制备技术研究进展
唐宏1,2, 董兵海1,2, 艾虎1,2
1 湖北大学有机化工新材料湖北省协同创新中心,武汉 430062
2 湖北大学功能材料绿色制备与应用教育部重点实验室,武汉 430062
Progress in Preparation Technology of Transparent Superhydrophobic Coating
TANG Hong1,2, DONG Binghai1,2, AI Hu1,2
1 Hubei Collaborative Innovation Center for Advanced Organic Materials,Wuhan 430062,China
2 Key Laboratory for the Green Preparation and Application of Functional Materials, Minister of Education, Hubei University,Wuhan 430062,China
下载:  全 文 ( PDF ) ( 3016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透明超疏水涂层兼具独特的超疏水性及光学透明性,由于其有着优异的自清洁性能,它可广泛应用于生产生活中的诸多领域。在不同基材上如何构建透明的超疏水涂层有着十分重大的研究价值,本文阐述了近年来透明超疏水涂层的制备方法进展,总结了透明超疏水涂层存在的主要问题及其发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐宏
董兵海
艾虎
关键词:  超疏水  透明性  粗糙度  涂层    
Abstract: Transparent superhydrophobic coating has unique superhydrophobicity and optical transparency. Due to its excellent self-cleaning perfor-mance, it can be widely used in many fields of production and life. How to construct transparent superhydrophobic coatings on different substrates has great research value. This paper describes the recent progress transparent superhydrophobic coating preparation methods,and summarizes the main problems and development direction of transparent superhydrophobic coatings.
Key words:  superhydrophobicity    transparency    roughness    coating
                    发布日期:  2021-07-16
ZTFLH:  O647  
基金资助: 国家重点研发计划政府间科技创新合作项目(2019YFE0107100)
通讯作者:  wwwdbh@163.com   
作者简介:  唐宏,湖北大学硕士研究生,主要研究方向为功能薄膜材料。董兵海,教授,博士研究生导师,主要研究领域包括光电功能材料和功能薄膜的制备。
引用本文:    
唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
TANG Hong, DONG Binghai, AI Hu. Progress in Preparation Technology of Transparent Superhydrophobic Coating. Materials Reports, 2021, 35(Z1): 156-159.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/156
1 Nguyen-Tri P, Tran H N, Plamondon C O, et al. Progress in Organic Coatings, 2019, 132, 235.
2 Darband G B, Aliofkhazraei M, Khorsand S, et al. Arabian Journal of Chemistry, 2018, 13(1), 1763.
3 Zhu T X, Cheng Y, Huang J, et al. Chemical Engineering Journal, 2020, 399, 125746.
4 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1.
5 Spaeth M, Barthlott W. Advances in Science & Technology, 2008, 60, 38.
6 Yan Y Y, Gao N, Barthlott W.Adv Colloid Interface, 2011, 169(2), 80.
7 Koch K, Bhushan B, Barthlott W.Progress in Materials Science, 2009, 54(2), 137.
8 Lin F, Li S H, Li Y, et al. Advanced Materials, 2010, 14(24), 1857.
9 Zheng L J, Wu X D, Lou Z, et al. Chinese Science Bulletin, 2004, 49(17), 1779.
10 Guo Z, Liu W, Su B L. Journal of Colloid and Interface Science, 2011, 353(2), 335.
11 Hooda A, Goyat M S, Pandey J K, et al.Progress in Organic Coatings, 2020, 142, 105557.
12 Joshi D N, Atchuta S R, Reddy L, et al. Solar Energy Materials and Solar Cells, 2019, 200, 110023.
13 Pendse S, Chandra S R K, Narendra C, et al. Solar Energy, 2018, 163, 425.
14 Gao L, He J.Journal of Colloid and Interface Science, 2013, 396, 152.
15 Wang N, Xiong D S. Colloids & Surfaces A: Physicochemical & Enginee-ring Aspects, 2014, 446, 8.
16 Ren T, Geng Z, He J, et al.Journal of Colloid and Interface Science, 2017, 486, 1.
17 Bake A, Merah N, Matin A, et al. Progress in Organic Coatings, 2018, 122, 170.
18 Wang S D, Wang J Y.Applied Surface Science, 2019, 476, 1035.
19 Zhang L Z, Zhi J H. Applied Surface Science, 2018, 454(1), 239.
20 Hooda A, Goyat M S, Kumar A, et al. Materials Letters, 2018, 233, 340.
21 Adak D, Bhattacharyya R, Saha H, et al. Materials Today: Proceedings, 2020, 33(6), 2429.
22 Rezaei S, Manoucheri I, Moradian R, et al. Chemical Engineering Journal, 2014, 252, 11.
23 Zhuang A Y, Liao R J, Dixon S C, et al. RSC Advances, 2017, 7(47), 29275.
24 Zhang F, Shi Z W, Jiang Y J, et al. Applied Surface Science, 2017, 407(15), 526.
25 Tombesi A, Li S, Sathasivam S, et al.Scientific Reports, 2019, 9(1), 7459.
26 Liang Z H, Zhou Z Z, Zhao L, et al. New Journal of Chemistry, 2020, 44, 1.
27 Martin S, Bhushan B. Journal of Colloid & Interface Science, 2017, 488, 118.
28 刘金钊. 自组装超疏水涂层的制备及其减阻性能研究. 硕士学位论文, 大连理工大学, 2012.
29 Li X, He J, Liu W.Materials Research Bulletin, 2013, 48(7), 2522.
30 Zhou Y H, Shang Q Q. Ceramics International, 2016, 42(7), 8706.
31 Lin C Y, Lin K A, Yang T W, et al.Journal of Colloid and Interface Science, 2017, 490, 174.
32 Manabe K, Nishizawa S, Kyung K H, et al.ACS Applied Materials & Interfaces, 2014, 6(16), 13985.
33 Lyu J J, Wu B R, Wu N, et al. Chemical Engineering Journal, 2020, 126456.
34 代学玉, 冷宝林, 高兰玲, 等. 山东化工, 2016, 45(17), 49.
35 王霞, 王辉, 侯丽, 等. 材料工程, 2020, 48(6), 73.
36 Xu Q, Zhao Q, Zhu X F, et al. Nanoscale, 2016, 8(41), 17747.
37 Ebert D, Bhushan B. Journal of Colloid and Interface Science, 2016, 481, 82.
38 Li T, He J H. Chinese Science Bulletin, 2014, 59(8), 715.
39 Zhang C, Kalulu M, Sun S, et al.Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2019, 570, 147.
40 Liu Y, Xu Q F, Lyons A M.Applied Surface Science, 2019, 470(15), 187.
41 Siddiqui A R, Li W, Wang F J, et al. Applied Surface Science, 2021, 542, 148534.
42 Zhang L, Xue C H, Cao M, et al.The Chemical Engineering Journal, 2017, 320, 244.
43 Wang B, Hua Y Q, Ye Y X, et al. Applied Surface Science, 2017, 426(31), 957.
[1] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[2] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[3] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[4] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[5] 田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
[6] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[7] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[8] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[9] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[10] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[11] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[12] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[13] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[14] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[15] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed