Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 66-69    https://doi.org/10.11896/j.issn.1005-023X.2017.08.014
  材料研究 |
镀锡银钎料扩散过渡区的物相和形成机制*
王星星1, 谭群燕1, 薛鹏2, 唐明奇1, 龙伟民3
1 华北水利水电大学机械学院, 郑州 450045;
2 南京理工大学材料科学与工程学院, 南京210094;
3 郑州机械研究所新型钎焊材料与技术国家重点实验室, 郑州 450001
Phase Composition and Formation Mechanism of Diffusion Transition Zone for Silver-based Brazing Alloys with Tin Coatings
WANG Xingxing1, TAN Qunyan1, XUE Peng2, TANG Mingqi1, LONG Weimin3
1 School of Mechanical Engineering,North China University of Water Resources and Electric Power, Zhengzhou 450045;
2 School of Materials Science and Engineering,Nanjing University of Science and Technology, Nanjing 210094;
3 State Key Laboratory of Advanced Brazing Filler Metals and Technology,Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 1469KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用温度梯度法对镀锡银钎料进行热扩散处理,形成了扩散过渡区。为了揭示镀锡银钎料扩散过渡区的形成机制和主要物相的形成过程,借助金相显微镜、扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射分析仪(XRD)对扩散过渡区的显微组织、Sn元素的面扫描分布、物相组成及形貌进行分析。研究表明,Sn元素在镀锡银钎料中分布均匀、无偏析,在扩散过渡区主要以棒状Ag3Sn相和块状Cu3Sn相存在。随着热扩散温度升高,Ag3Sn相和Cu3Sn相的相对衍射强度逐渐增大。Ag3Sn相的形成过程分为三个阶段:Ag3Sn颗粒相弥散分布、Ag3Sn颗粒相互相接触合并、生成大块棒状化合物相。Cu3Sn相主要是锡晶须生长冲破镀层的氧化膜,在张应力和压应力协同作用下形成。镀锡银钎料扩散过渡区的形成机制为“钎接、互扩散、亚稳态、合金化”。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王星星
谭群燕
薛鹏
唐明奇
龙伟民
关键词:  镀锡银钎料  扩散过渡区  温度梯度  物相  形成机制    
Abstract: Silver-based brazing alloys with tin coatings were thermally diffused using temperature gradient method,and diffusion transition zone would occur. In order to reveal the compound phases and its formation process of silver-based brazing alloys with tin coatings, the microstructure, mapping images of Sn, phase and morphology of diffusion transition zone were analyzed using the metallurgical microscope, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD), respectively. The results show that Sn are uniformly distributed in the diffusion transition zone. The microstructure of diffusion transition zone are mainly composed of Ag3Sn phase and Cu3Sn phase. The relative diffraction intensity of Ag3Sn phase and Cu3Sn phase gradually increase with the increase of diffusion temperature. The formation process of Ag3Sn phase can be divided into three stages,including Ag3Sn particle phase disperse distribution, Ag3Sn particle phase merging and Ag3Sn bulk compound phase generation. Because the coating oxidation is broke out through tin whisker growth and synergistic action is formed between tensile stress and compressive stress, Cu3Snp phase will be appeared at the diffusion transition zone. The formation mechanism of diffusion transition zone can be summarized as brazing, mutual diffusion, metastability, alloying.
Key words:  silver-based brazing alloy with tin coating    diffusion transition zone    temperature gradient    phase    formation mechanism
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG454  
基金资助: 河南省自然科学基金(HZK170158);河南省高等学校重点科研项目(17A430021);华北水利水电大学博士基金
作者简介:  王星星:男,1984年生,博士,讲师,主要研究方向为新型银基钎料及其钎焊工艺开发 E-mail:paperwxx@126.com
引用本文:    
王星星, 谭群燕, 薛鹏, 唐明奇, 龙伟民. 镀锡银钎料扩散过渡区的物相和形成机制*[J]. 《材料导报》期刊社, 2017, 31(8): 66-69.
WANG Xingxing, TAN Qunyan, XUE Peng, TANG Mingqi, LONG Weimin. Phase Composition and Formation Mechanism of Diffusion Transition Zone for Silver-based Brazing Alloys with Tin Coatings. Materials Reports, 2017, 31(8): 66-69.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.014  或          http://www.mater-rep.com/CN/Y2017/V31/I8/66
1 Daniel S,Gunther W,Sebastian S. Development of Ag-Cu-Zn-Sn brazing filler metals with a 10weight% reduction of silver and liquids temperature[J].China Weld(English Ed),2014,23(4):25.
2 Sui Fangfei,Long Weimin,Liu Shengxin, et al. Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag-Cu-Zn brazing filler metal[J]. Mater Des,2013,46:605.
3 Li M G,Sun D Q,Qiu X M,et al. Effect of tin on melting temperature and microstructure of Ag-Cu-Zn-Sn filler metals[J].Mater Sci Technol (United Kingdom),2005,21(11):1318.
4 Wierzbicki L J,Malec W,Stobrawa J,et al. Studies into new, environmentally friendly Ag-Cu-Zn-Sn brazing alloys of low silver content[J].Arch Metall Mater,2011,56(1):147.
5 Long Weimin,Zhang Guanxing,et al. In-situ synthesis of high st-rength Ag brazing filler metals during brazing process[J].Trans China Weld Inst,2015,36(11):1(in Chinese).
龙伟民,张冠星,等. 钎焊过程原位合成高强度银钎料[J].焊接学报,2015,36(11):1.
6 Winiowski A,Rózanski M. Impact of tin and nickel on the brazing properties of silver filler metals and on the strength of brazed joints made of stainless steels[J].Arch Metall Mater,2013,58(4):1007.
7 Long W M,Zhang G X,Zhang Q K. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J].Scr Mater,2016,110:41.
8 Wang Xingxing,Zhang Guanxing,Long Weimin,et al. Experimental research of Tin brush electro-plated on Ag45CuZn brazing filler me-tal[J].Rare Met Mater Eng,2013,42(11):2394(in Chinese).
王星星,张冠星,龙伟民,等. Ag45CuZn钎料表面刷镀锡的试验研究[J]. 稀有金属材料与工程,2013,42(11):2394.
9 Wang Xingxing,Long Weimin,Ma Jia,et al. Effect of electroplated tin coating on properties of BAg50CuZn brazing filler metal[J].Trans China Weld Inst,2014,35(9):61(in Chinese).
王星星,龙伟民,马佳,等. 锡镀层对BAg50CuZn钎料性能的影响[J].焊接学报,2014,35(9):61.
10 Wang Xingxing,Du Quanbin,Long Weimin,et al. Effect of micro tin brush-electroplated coating on properties of AgCuZnSn brazing filler metals[J].Trans China Weld Inst,2015,36(3):47(in Chinese).
王星星,杜全斌,龙伟民,等. 微米锡刷镀层对AgCuZnSn钎料性能的影响[J].焊接学报,2015,36(3):47.
11 Lao Bangshen,Gao Su,Zhang Qiyun. Nonequilibrium growth of intermetallics at the interface of liquid-solid metal[J].Acta Phys-Chim Sin,2001,17(5):453(in Chinese).
劳邦盛,高苏,张启运. 固液金属界面上金属间化合物的非平衡生长[J].物理化学学报,2001,17(5):453.
12 Lu K,Sui M L. Is the crystalline structure in nanocrystalline mate-rials different from the perfect crystal lattice?[J].J Mater Sci Technol,1993,9:419.
13 Wright W,Askeland D R. The science and engineering of materials[M].Bosto:Cengage Learning Custom Publishing,2015:82.
14 Meher H. Diffusion in solids:Fundamentals,methods, materials,diffusion-controlled processes[M]. Berlin:Springer-Verlag,2010:201.
15 Kalogeropoulou S,Rado C,Eustathopoulos N. Mechanisms of reactive wetting:The wetting to non-wettingase[J].Scr Mater,1999,41(7):723.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[3] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[4] 王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
[5] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[6] 钟红荣, 张岩, 包红, 方艳, 吴婷芳, 朱勇, 张小宁, 徐水. 丝素/明胶/壳聚糖支架材料的构建及表征[J]. 材料导报, 2018, 32(22): 3954-3960.
[7] 代晓军, 杨西荣, 王昌, 徐鹏, 赵曦, 于振涛. 生物医用可降解锌基合金的研究进展[J]. 材料导报, 2018, 32(21): 3754-3759.
[8] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化[J]. 材料导报, 2018, 32(18): 3239-3243.
[9] 姜涛, 王瑞彬, 霍枫. 用于体外循环装置的材料涂层技术综述与展望[J]. 《材料导报》期刊社, 2018, 32(13): 2304-2310.
[10] 詹世平, 闫思圻, 赵启成, 王卫京, 李鸣明. 石墨烯基材料的生物医用性能及其应用*[J]. 《材料导报》期刊社, 2017, 31(13): 25-32.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed