Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15163-15173    https://doi.org/10.11896/cldb.19070026
  高分子与聚合物基复合材料 |
智能印迹聚合物研究进展及发展瓶颈
张小艳1,2, 孙元3, 李慧1,2, 陈振斌1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 中国科学院金属研究所,沈阳 110000
Research Progress and Development Bottleneck of the Smart Imprinted Polymer
ZHANG Xiaoyan1,2, SUN Yuan3, LI Hui1,2, CHEN Zhenbin1,2
1 College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China
下载:  全 文 ( PDF ) ( 4544KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 印迹聚合物(IPs)具有结构预定性、长期稳定性、广泛实用性和特异识别性等优点,且成本低廉、制备方法简便,在分离科学、固相萃取、色谱分离、药物控制释放、化学传感、环境检测、电化学,膜分离等众多领域展现出广阔的应用前景,为模板的精准分离提供了良好的物质基础和技术支撑,在可持续发展和循环经济成为时代主题的今天,该类材料将进一步成为材料领域的又一个研究热点。
采用传统方法制备的IPs是高度交联的聚合物,其虽然具有稳定的结构、识别性强等优点,但是分子识别简单、机械,缺乏必要的“柔性”,对外界的刺激条件缺乏足够的敏感性,导致在分离纯化过程中解吸率、选择性和重复使用性难以平衡,进而限制了其在产业化分离中的应用。近年来,研究者们的研究兴趣逐渐转移到能够赋予传统IPs“柔性”的智能印迹聚合物。
将智能聚合物(SPs)与印迹聚合物(IPs)相结合,可制备出一类新型功能材料,即智能印迹聚合物(S-IPs)。它不仅具有普通印迹聚合物的特异选择性,而且还具有对外界刺激的响应性和形变可逆性等特性,这使得其吸附及解吸性能更加优异,受到广泛的关注。关于S-IPs的研究已取得系列成果,已成功制备出温敏性IPs(T-IPs)、磁响应性IPs (M-IPs)、pH敏感性IPs (pH-IPs)、光响应性IPs (P-IPs)及双重敏感性IPs (pH-M IPs,pH-T IPs,T-M IPs,P-M IPs等)和多重敏感性智能印迹聚合物,在药物递送、生物技术、分离科学、传感器等众多领域展现出良好的应用前景。
本文主要对S-IPs在作用机制和制备方法等方面的研究进展进行了综述,并就发展S-IPs所需突破的关键瓶颈问题进行了分析和总结,对其未来发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小艳
孙元
李慧
陈振斌
关键词:  智能印迹聚合物  作用机制  制备方法  发展瓶颈    
Abstract: Some intrinsic advantages, such as structural predetermination, long-term stability, wide applicability, specific recognition, added to the superiority of cost and preparation technology, make imprinted polymers (IPs) displaying potential application prospect in separation science, solid phase extraction, chromatographic separation, drug controlled release, chemical sensing, environmental detection, electrochemistry, membrane separation and many other fields, which, in fact, provide a foundation material basis and technical support for the accurate separation of templates. Nowadays, with the concept of sustainable development and circular economy accepted increasingly. IPs will be focused more as a research hotspot in the field of high performance functional materials inevitably.
However, IPs prepared by the traditional method is a highly cross-linked polymer, and the high cross-linking degree endowing IPs advantages of stable structure and strong recognition. However, owing to the simple and mechanical molecular recognition mechanism resulted from high cross-linking degree, IPs prepared by traditional method lacked the necessary "flexibility" and sufficient sensitivity to external stimulation conditions, which resulted in the difficulty to balance the desorption rate, selectivity and reusability during the separation and purification process, and further limited them application in practical industrial separation. In recent years, researchers' interest has gradually shifted to smart imprinted polymers that can improve the “flexibility” of traditional IPs.
A new type of functional material, namely smart imprinted polymers (S-IPs), was prepared by combining smart polymers (SPs) with imprinted polymers (IPs). It not only has the specific selectivity of common imprinted polymers, but also has the characteristics of responsiveness to external stimuli and reversibility of deformation, which makes them more excellent in adsorption and desorption. Research on S-IPs had achieved series of exciting results. Studies had successfully prepared temperature-sensitive IPs (T-IPs), magnetically responsive IPs (M-IPs), pH-sensitive IPs (pH-IPs), photoresponsive IPs (P-IPs) and dual-sensitive IPs (pH-M IPs, pH-T IPs, TM IPs, PM IPs, etc.) and multiple-sensitivity S-IPs, and all above had presented strong prospects in areas such as drug delivery, biotechnology, separation science and sensor etc.
This paper mainly reviews the research progress of S-IPs in intelligent mechanism and preparation method. Finally, key bottlenecks that hold back the development of S-IPs are summarizes, and the potential development prospect is concerned.
Key words:  smart imprinted polymers    mechanism of action    preparation methods    development bottleneck
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TQ32  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金 (18LHZD003;18LHPY004)
通讯作者:  zhenbinchen@163.com   
作者简介:  张小艳,现为兰州理工大学材料科学与工程学院硕士研究生,在陈振斌教授的指导下进行研究。目前主要研究领域为钌离子印迹聚合物的制备及吸附分离性能。
陈振斌, 兰州理工大学材料学院教授,博士研究生导师。2002—2007年,兰州大学硕博连读攻读博士学位;2007年起,任教于兰州理工大学材料学院,期间于2008—2011年在中科院兰州化物所在职从事博士后研究工作,研究方向为吸附分离性功能高分子材料。长期从事吸附分离性功能高分子材料的研究。主持完成甘肃省自然科学基金1项,甘肃省教育厅硕士研究生导师基金项目1项;作为技术负责人参加国家自然科学基金2项,甘肃省高等学校基本科研基金1项;作为技术负责人参与完成横向项目2项;曾获甘肃省教育厅教学成果奖1项;申报专利2项。发表论文50余篇,其中SCI、EI收录32篇。所发表文章中影响因子3以上4篇; 2012年分别获“凯盛开能杯”第五届全国大学生节能减排社会实践与科技竞赛三等奖指导教师奖、兰州理工大学毕业论文“优秀指导教师”和 兰州理工大学大学生创业计划大赛“优秀指导教师”奖,2013年参与制作的《高分子物理》课件获国家级课件大赛三等奖。
引用本文:    
张小艳, 孙元, 李慧, 陈振斌. 智能印迹聚合物研究进展及发展瓶颈[J]. 材料导报, 2020, 34(15): 15163-15173.
ZHANG Xiaoyan, SUN Yuan, LI Hui, CHEN Zhenbin. Research Progress and Development Bottleneck of the Smart Imprinted Polymer. Materials Reports, 2020, 34(15): 15163-15173.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070026  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15163
1 Barahona F, Albero B, Tadeo J L, et al.Journal of Chromatography A, 2019, 1587, 42.2 Wagner S, Bell J, Biyikal M, et al.Biosensors and Bioelectronics, 2018, 99, 244.3 Lins S S, das Virgens C F, dos Santos W N L, et al.Microchemical Journal, 2019,150, 104075.4 Adams F, Pahl P, Rieger B.Chemistry-A European Journal, 2018, 24(3), 509.5 Kowalski P S, Capasso Palmiero U, Huang Y, et al. Advanced Materials, 2018, 30(34), 1801151.6 Matyjaszewski K.Advanced Materials, 2018, 30(23), 1706441.7 Moad G.Journal of Polymer Science Part A: Polymer Chemistry, 2019, 57(3), 216.8 Xie S, Tang H D. Polymer Bulletin, 2017(7), 7(in Chinese).谢珊, 唐华东. 高分子通报, 2017(7), 7.9 Pauling L.Journal of the American Chemical Society, 1940, 62(10), 2643.10 Dickey F H.The Journal of Physical Chemistry, 1955, 59(8), 695.11 Vlatakis G, Andersson L I, Müller R, et al. Nature, 1993, 361(6413), 645.12 Chen L, Wang X, Lu W, et al.Chemical Society Reviews, 2016, 45(8), 2137.13 Rao H, Chen M, Ge H, et al.Biosensors and Bioelectronics, 2017, 87, 1029.14 Dong Z, Zeng J, Zhou H, et al.Journal of Chemical Technology & Biotechnology, 2019, 94(3), 942.15 Zou S, Li G, Rees T W, et al.Chemistry-A European Journal, 2018, 24(3), 690.16 Li D, He Q, He Y, et al.Biosensors and Bioelectronics, 2017, 94, 328.17 Shi Y, Ma C, Peng L, et al.Advanced Functional Materials, 2015, 25(8), 1219.18 Haq M A, Su Y, Wang D.Materials Science and Engineering: C, 2017, 70, 842.19 Zhao T, Guan X, Tang W, et al.Analytica Chimica Acta, 2015, 853, 668.20 Yang X, Xia Y.Journal of Separation Science, 2016, 39(2), 419.21 Xiong H, Wu X, Lu W, et al. Talanta, 2018, 176, 187.22 Zheng D, Pei S, Geng S, et al.Journal of Nanoscience and Nanotechnology, 2019, 19(9), 5858.23 Du Y, Ma W, Liu P, et al.Journal of Hazardous Materials, 2016, 308, 58.24 Yao Y, Lu F, Zhu Y, et al.Journal of Hazardous Materials, 2015, 297, 224.25 Tan C, Lee J, Jung S G, et al.Nature Communications, 2018, 9(1), 1554.26 Jiang B, Han C, Li B, et al.ACS Nano, 2016, 10(2), 2728.27 Manzoli M, Calcio Gaudino E, Cravotto G, et al.ACS Sustainable Chemistry & Engineering, 2019, 7(6), 5963.28 Fu X, Liang L, Li X Q, et al. Acta Scientiae Circumstantiae, 2018, 38(4), 1606 (in Chinese).付欣, 梁莉, 李筱琴, 等. 环境科学学报, 2018, 38(4), 1606.29 Wei J, Shuai X, Wang R, et al.Biomaterials, 2017, 145, 138.30 Gao R, Cui X, Hao Y,et al. Food Chemistry, 2016, 194, 1040.31 Zhu K C, Zha X H, Jia H Z, et al. Technology of Water Treatment, 2017, 43(7), 65(in Chinese).祝可成, 査向浩, 贾汉忠, 等. 水处理技术, 2017, 43(7), 65.32 Li Y, Li X, Chu J, et al.Environmental Pollution, 2010, 158(6), 2317.33 Huang W W, Zhao Q Y, Yang X, et al. Journal of Functional Materials, 2019, 50(1), 1018(in Chinese).黄微薇, 赵倩玉, 杨鑫, 等. 功能材料, 2019,50(1),1018.34 Khoddami N, Shemirani F.Talanta, 2016, 146, 244.35 Zhang L M, Wei X P, Wei Y X, et al.Chinese Journal of Analytical Chemistry, 2014, 42(11), 1580(in Chinese).张连明, 魏小平, 韦衍溪, 等. 分析化学, 2014, 42(11), 1580.36 Li Y, Kang J J, Zhao X R, et al.Chemical Journal of Chinese Universities, 2019, 40(3), 448 (in Chinese). 李颖, 康君君, 赵雪茹, 等. 高等学校化学学报, 2019, 40(3), 448.37 Fan J P, Liao D D, Xie Y L, et al.Journal of Applied Polymer Science, 2017, 134(7),44465.38 Xiao R, Zhang X, Zhang X, et al.Talanta, 2017, 166, 262.39 Dong S L, Wang S N, Wang X L, et al. Chinese Journal of Luminescence, 2019, 40(4), 453(in Chinese).董淑玲, 王胜男, 王秀玲, 等. 发光学报, 2019, 40(4), 453.40 Anirudhan T S, Christa J, Deepa J R. Food Chemistry, 2017, 227, 85.41 Miao S S, Wu M S, Zuo H G, et al.Journal of Agricultural and Food Chemistry, 2015, 63(14), 3634.42 Li Y, Ding M J, Wang S, et al.ACS Applied Materials & Interfaces, 2011, 3(9), 3308.43 Xie X, Chen L, Pan X, et al.Journal of Chromatography A, 2015, 1405, 32.44 Tang Y, Gao J, Liu X, et al.Food Chemistry, 2016, 201, 72.45 Jia X, Xu M, Wang Y, et al.Analyst, 2013, 138(2), 651.46 Uzuriaga-Sánchez R J, Khan S, Wong A, et al.Food Chemistry, 2016, 190, 460.47 Yang C, Yu D G, Pan D, et al. Acta Biomaterialia, 2016, 35, 77.48 Yoshizaki Y, Yuba E, Sakaguchi N, et al.Biomaterials, 2017, 141, 272.49 Miyazaki M, Yuba E, Hayashi H, et al.Bioconjugate Chemistry, 2017, 29(1), 44.50 Alam A, Meng Q, Shi G, et al.Composites Science and Technology, 2016, 127, 119.51 Liu B, Palmfeldt J, Lin L, et al.Cell Research, 2018, 28(10), 996.52 Lee S H, McIntyre D, Honess D, et al.British Journal of Cancer, 2018, 119(5), 622.53 Sahiner N, Sagbas S, Sahiner M, et al.Materials Science and Enginee-ring: C, 2017, 70, 317.54 Chen Z, Xu L, Liang Y, et al.Advanced Materials, 2010, 22(13),1488.55 Mao C, Xie X, Liu X, et al.Materials Science and Engineering: C, 2017, 77, 84.56 Mohajeri S A, Malaekeh-Nikouei B, Sadegh H.Drug Development and Industrial Pharmacy, 2012, 38(5), 616.57 Wu Z, Ji C, Zhao X, et al. Journal of the American Chemical Society, 2019, 141 (18), 7385.58 Duman O, Tunç S, Bozoɡˇlan B K, et al.Journal of Alloys and Compounds, 2016, 687, 370.59 Wei Y, Tang Q, Gong C, et al.Analytica Chimica Acta, 2015, 900, 10.60 Samanta D, Galaktionova D, Gemen J, et al. Nature Communications, 2018, 9(1), 641.61 Yuan J, Yuan Y, Tian X, et al.The Journal of Physical Chemistry C, 2016, 120(27), 14840.62 Rosales A M, Mabry K M, Nehls E M, et al.Biomacromolecules, 2015, 16(3), 798.63 Dong L, Feng Y,Wang L, et al. Chemical Society Reviews, 2018, 47(19), 7339.64 Konrad D B, Frank J A, Trauner D.Chemistry-A European Journal, 2016, 22(13), 4364.65 Taniguchi T, Fujisawa J, Shiro M, et al.Chemistry-A European Journal, 2016, 22(23),7950.66 Gong C B, Lam M H W,Yu H X. Advanced Functional Materials, 2006, 16(13), 1759. 67 Fang L, Chen S, Zhang Y, et al.Journal of Materials Chemistry, 2011, 21(7), 2320.68 Tang Q, Li Z, Wei Y, et al.Materials Science and Engineering: C, 2016, 66, 33.69 Xie J, Zhong G, Cai C, et al.Talanta, 2017, 169, 98.70 Dong X, Ma Y, Hou C, et al.Polymer International, 2019, 68(5), 955.71 Li L, Chen L, Zhang H, et al.Materials Science and Engineering: C, 2016, 61, 158.72 Xu S, Li J, Song X, et al. Analytical Methods, 2013, 5(1), 124.73 Duan C, Chen Z, Liu X, et al. Journal of Materials Research, 2019, 148, 1.
[1] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[2] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[3] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[4] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[5] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[6] 曹凤, 张文彦, 张思思, 燕阳天, 杨瑞锋. 多孔金属材料的化学制备方法及性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 139-145.
[7] 张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
[8] 高 鑫, 岳红彦, 郭二军, 姚龙辉, 林轩宇, 王 宝. 三维石墨烯复合材料的制备及其在超级电容器领域的研究现状[J]. 材料导报, 2017, 31(1): 25-29.
[9] 王 彤, 鲍 艳. 功能型聚丙烯酸酯/无机纳米复合皮革涂饰剂的研究进展[J]. 材料导报, 2017, 31(1): 64-71.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed