Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 527-530    
  高分子与聚合物基复合材料 |
水体中芳香类有机化合物吸附材料的研究进展
魏俊富1,2, 张天烨1,2, 辛卓含1,3, 王智航1,3, 张丽1,2
1 天津工业大学分离膜与膜过程国家重点实验室,天津 300387;
2 天津工业大学化学与化工学院,天津 300387;
3 天津工业大学环境科学与工程学院,天津300387
Research Progress of the Aromatic Organic CompoundAdsorption Materials in Water
WEI Junfu1,2, ZHANG Tianye1,2, XIN Zhuohan1,3, WANG Zhihang1,3, ZHANG Li1,2
1 State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China;
2 School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China;
3 School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 2036KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业的发展,各种有机化合物的种类越来越多,使用也越来越广泛。有机化合物尤其是芳香类化合物的大规模使用给人们带来了便利,但芳香类化合物有毒,会对人体造成损害,可以引发人体内分泌系统疾病、神经系统疾病等,严重的还会引发内脏衰竭,甚至癌症。一旦处理不完全,芳香类化合物便可以随着工业废水、生活废水、医疗废水等进入自然水体。由于其在自然环境下很难自然降解,可以在水体中不断积累,因此对芳香类化合物的后续处理是必须面对的问题。
目前,处理水体中有机污染物的主要方法有吸附法、催化降解法、沉淀法、微生物处理法等。其中,吸附法由于具有操作简单、成本低廉的优势,是目前应用十分广泛的方法之一。吸附法处理的核心是吸附材料的选择。吸附材料从最早期的活性炭、沸石、膨润土、竹纤维等天然材料,发展到现在的石墨烯、碳纳米管、吸附树脂等高性能改性材料。早期的活性炭、沸石、竹纤维等材料具有较大的比表面积和丰富的孔道结构,但其不具备选择性,在复杂环境下,不能吸附特定物质,而且容易达成吸附饱和。此外,早期材料的孔道类型往往为封闭型,故而再生性能不好,往往只能作为一次性材料。早期材料虽然有一定不足,但由于成本低廉,目前依然在大规模使用。新型的石墨烯、碳纳米管等材料往往具有更大的比表面积、更丰富的孔隙、更强的吸附作用力等,且经改性后,再生性能改善明显。新一代吸附材料往往可以重复利用10次以上,部分改性甚至可以使材料使用次数达50次以上。但新一代材料的合成和应用成本往往很高,并且虽然选择性有一定改善,但在复杂环境下,吸附位点被占用的问题仍未得到很好的解决。
本文从材料类型的角度出发,分别展示了传统吸附材料、碳材料、膜材料、大孔树脂材料的应用和研究进展,以期为新型吸附材料的研发和制备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏俊富
张天烨
辛卓含
王智航
张丽
关键词:  吸附材料  有机污染物  活性炭  石墨烯  大孔树脂    
Abstract: With the development of industry, the use of various organic compounds is more and more extensive, and the types of organic compounds are manifold. The large-scale use of organic compounds, especially aromatic compounds, bring much convenience to people, but at the same time, cause damage to the human body, which can lead to endocrine system diseases, nervous system diseases, and even cause visceral failure and cancer. Once the treatment is incomplete, aromatic compounds can enter the natural water with industrial wastewater, domestic wastewater and medical wastewater. Because they are difficult to degrade naturally in the natural environment, and they can accumulate conti-nuously in water, so the follow-up treatment of aromatic compounds is a problem we must face. At present, the main methods to treat organic pollutants in water include adsorption, catalytic degradation, precipitation, microbial treatment and so on. Because of the advantages of simple operation and low cost, adsorption method is one of the most widely used methods. The core of adsorption treatment is the selection of adsorption materials. Adsorption materials developed from the earliest activated carbon, zeolite, bentonite, bamboo fiber and other natural materials to the present graphene, carbon nanotubes, adsorption resin and other high-performance modified materials. Activated carbon, zeolite, bamboo fiber and other materials have a large specific surface area and rich channel structure, but due to the lack of selectivity in complex environment, they cannot absorb specific substances, and easy to achieve adsorption saturation. In addition, channels that the early materials had are often closed, which lead to the poor regeneration performance. Early materials often can only be used as disposable materials. Although the early materials have some shortcomings, but because of the low cost, they are still in large-scale use now. New graphene, carbon nanotubes and other materials further expand the advantages of traditional materials, which tend to have larger specific surface area, more abundant pores, and stronger adsorption force and so on, and make certain improvements on this basis, especially obvious improvement in regeneration performance. The new generation of adsorption materials can often be reused for more than 10 times, and some of the modification focusing on regenerative properties can even make the materials used for more than 50 times. However, the cost of synthesis and application of new generation materials is often very high, and although the selectivity has been improved to some extent, the problem of occupied adsorption sites has not been well solved in complex environments. In this paper, from the perspective of material type, the application and research progress of traditional adsorption materials, carbon materials, membrane materials and macro porous resin materials are presented respectively, in order to provide references for the development and preparation of new adsorption materials.
Key words:  adsorption materials    organic pollution    active carbon    graphene    macro porous resin
                    发布日期:  2020-07-01
ZTFLH:  X703  
基金资助: 国家自然科学基金项目(51678409)
作者简介:  魏俊富,天津工业大学教授、博士研究生导师,1985年本科毕业于南开大学有机化学专业,2005年获得南开大学高分子化学与物理专业博士学位,现任职于天津工业大学化学与化工学院,主要从事环境功能材料表面结构设计与应用、聚合物分离膜改性研究、有害污染物的快速检测、分离、富集、去除等方面的研究工作。主持国家自然科学基金项目一项、863计划项目子课题一项以及多项天津市级科研项目。发表论文30余篇、专利10余项。获天津市高校环境学科领军人才称号。
引用本文:    
魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
WEI Junfu, ZHANG Tianye, XIN Zhuohan, WANG Zhihang, ZHANG Li. Research Progress of the Aromatic Organic CompoundAdsorption Materials in Water. Materials Reports, 2020, 34(Z1): 527-530.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/527
1 Bi H, Xie X, Yin K, et al. Advanced Functional Materials,2012,22(21),4421.
2 Chen Y, Chen L, Bai H, et al. Journal of Materials Chemistry A,2013,1(6),1992.
3 Gao Y, Li Y, Zhang L, et al.Journal of Colloid and Interface Science,2012,368(1),540.
4 Huang D, Xu B, Wu J, et al. Chemical Engineering Journal,2019,368,390.
5 Li S, Zhang X, Huang Y. Journal of Hazardous Materials,2017,321,711.
6 Seo P W, Khan N A, Jhung S H. Chemical Engineering Journal,2017,315,92.
7 Ahmed M B, Zhou J L, Ngo H H, et al. Science of The Total Environment,2015,532,112.
8 Bhatnagar A, Anastopoulos I. Chemosphere,2017,168,885.
9 郝瑞刚.化学工程与装备,2019(9),281.
10 王金渠,杨建华,李华征,等.膜科学与技术,2014,34(3),1.
11 YIldIz N, Gönülşen R, Koyuncu H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,260(1-3),87.
12 陈桂娟,林坦,梅国威,等.安徽职业技术学院学报,2019,18(3),19.
13 李婷,孟昭福,张斌.环境科学,2012,33(5),1632.
14 陈仕稳,聂锦旭,吴光锋等.非金属矿,2014,33(6),78.
15 Lemić J, Kovačević D, Tomašević-anović M, et al. Water Research,2006,40(5),1079.
16 Gupta S, Tai N. Journal of Material Chemistry A,2016,4,1550.
17 Wang Y, Rao G Y, Hu J Y. Water Science and Technology: Water Supply,2011,11(6),711.
18 Shane A. Snyder S A A M. Desalination,2005,202(2007),156.
19 郭栋生,李艳霞,赵艳红,等.给水排水,2007,33(1),30.
20 Darder M, Aranda P, Ruiz-García C, et al. Advanced Functional Mate-rials,2018,28(27),1704323.
21 Heo J, Lee H, Han J, et al. Journal of Korean Society of Water and Wastewater,2014,28(4),419.
22 Wang Y, Fu W, Shen Y, et al. Langmuir,2018,34(44),13210.
23 Sotelo J L, Rodríguez A R, Mateos M M, et al. Journal of Environmental Science and Health, Part B,2012,47(7),640.
24 Abraham J, Vasu K S, Williams C D, et al. Nature Nanotechnology,2017,12(6),546.
25 An Y, Qu W, Yu P, et al. Petroleum Science,2018,15(2),366.
26 Chen C, Zhu X, Chen B. Chemical Engineering Journal,2018,354,896.
27 Chen L, Li N, Wen Z, et al. Chemical Engineering Journal,2018,347,12.
28 赵超峰,金佳人,霍英忠,等.无机材料学报,DOI:10.15541/jim20190377.
29 Tian J, Wei J, Zhang H, et al. Chemical Engineering Journal,2019,359,852.
30 Chon K, Kyongshon H, Cho J. Bioresource Technology,2012,122,181.
31 Huang Z H, Liu Z L, Zhu L J, et al. Advanced Materials Research,2013,726-731,2502.
32 Huang Z, Li M, Li N, et al. Journal of Nanoscience and Nanotechnology,2018,18(7),4524.
33 Yoon Y, Westerhoff P, Snyder S A, et al. Journal of Membrane Science,2006,270(1-2),88.
34 Comerton A M, Andrews R C, Bagley D M, et al. Journal of Membrane Science,2007,303(1-2),267.
35 Comerton A M, Andrews R C, Bagley D M, et al. Journal of Membrane Science,2008,313(1-2),323.
36 程爱华,王磊,王旭东,等.膜科学与技术,2008,28(5),90.
37 胡建国,朱根华,严志宏,等.现代盐化工,2016,43(3),36.
38 Jiang Z M, Li A M, Cai J G, et al. Journal of Environmental Science,2006,19(2007),135.
39 Lu Z, Jiang B, Li A. Chemical Engineering Journal,2012,193-194,139.
40 Zhang W M, Chen J L, Li A M. Chinese Journal of Polymer Science,2006,24(1),61.
41 Meng G H, Li A M, Yang W B. Chinese Journal of Polymer Science,2006,24(6),585.
42 王学江,张全兴,赵建夫,等.环境污染治理技术与设备,2005,6(1),62.
[1] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[2] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[3] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[4] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[5] 代朝猛, 王泽雨, 段艳平, 刘曙光, 涂耀仁, 李彦. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J]. 材料导报, 2020, 34(Z1): 107-110.
[6] 张净净, 李海朝. 磷酸活化鱼鳞活性生物炭的制备及表征[J]. 材料导报, 2020, 34(Z1): 116-119.
[7] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[8] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[9] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[10] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[11] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[12] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[13] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[14] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[15] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed