Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2997-3002    https://doi.org/10.11896/cldb.18070224
  高分子与聚合物基复合材料 |
植物细胞壁纤维素纤丝聚集体结构研究进展
金克霞,江泽慧,刘杏娥,杨淑敏,田根林,马建锋
国际竹藤中心竹藤科学与技术重点实验室,北京100102
Research Advance in Cellulose Fibril Aggregates Structure of Plant Cell Wall
JIN Kexia, JIANG Zehui, LIU Xinge, YANG Shumin, TIAN Genlin, MA Jianfeng
Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102
下载:  全 文 ( PDF ) ( 7925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素是由D-葡萄糖以β-1,4糖苷键连接而成的链状大分子,多条纤维素分子单链可聚集形成不同大小的束状纤维素纤丝聚集体(亚元纤丝、基元纤丝、微纤丝、宏纤丝),在植物细胞壁中起骨架支撑作用,赋予细胞壁优异的抗拉强度。纤维素是来源丰富的天然高分子材料,具有可再生、易生物降解、生物相容性好等特点,已广泛应用于轻工、化工、能源、环保等领域,其开发利用与纤维素纤丝聚集体尺寸、形貌、排列、结晶度、晶型结构变化密切相关。
   然而,纤维素纤丝聚集体尺寸、形貌、排列等信息由于样品制备方式、生物质来源、基质含量、细胞类型等不同而存在较大差异;且在植物细胞壁中,纤维素纤丝聚集体被包裹在木质素、半纤维素、果胶等基质中,限制了纤维素的提取与利用。因此,为更好地利用纤维素纤丝聚集体,研究者们大量研究了不同的化学预处理方法(离子液体、碱、酸)及其影响因子(浓度、温度、时间等)对纤维素纤丝聚集体及纤丝周围基质化合物的影响。其中,离子液体可引起细胞壁润胀,改变纤维素晶型结构,降低结晶度,甚至可以将纤维素纤丝聚集体分离成纤维素单链,且不同类型的离子液体对细胞壁各组分溶解能力及溶解规律不一。碱处理能有效溶解细胞壁中木质素及少量半纤维素,表面粗糙度和表面孔隙率均降低,且纤维素纤丝聚集体尺寸、晶型结构、结晶度变化与碱浓度、预处理时间、温度等因素相关。在酸浓度较低时,酸处理对细胞壁中半纤维素的溶出更有效,同时伴随少量木质素颗粒的析出,细胞壁表面粗糙度增大,晶型结构一般保持不变,结晶度增大;当酸浓度较高时,纤维素纤丝聚集体可进一步水解得到纤维素纳米晶,具有高模量、高比表面积、高结晶度的纤维素纳米晶可作为基质、模板、分散剂、增强体等应用于各类复合材料。
   本文首先对纤维素纤丝聚集体的组成单元及生物合成过程进行了概述,介绍了在组织及细胞水平上,纤维素纤丝聚集体在各种生物质原料中的尺寸、排列变化及影响因素。在此基础上,总结了不同化学处理方法(离子液体、碱、酸)对纤维素纤丝聚集体的作用机制及对纤维素纤丝聚集体尺寸、形貌、结晶度、晶型结构的影响,最后对纤维素纤丝聚集体结构研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金克霞
江泽慧
刘杏娥
杨淑敏
田根林
马建锋
关键词:  纤维素纤丝聚集体  尺寸  晶型结构  化学处理    
Abstract: Cellulose is a linear homopolymer of β-1, 4-linked D-glucan chain, where the glucan chains further gather into cellulose fibril aggregates which including sub-elementary fibril,elementary fibrils, microfibrils and macrofibrils with different bundle size. The cellulose fibril aggregates existing in the cell wall plays a skeleton supporting role so that gives the cell wall excellent tensile strength.Cellulose is one of the most abundant natural polymer materials with characteristic of renewable, biodegradable, biocompatibility, which has been widely used in light industry, chemical industry, energy and environmental protection.The development and utilization of cellulose are closely related to the size, morphology, arrangement, crystallinity and crystalline structure of cellulose fiber aggregates.
However, the size, morphology, arrangement of cellulose fibril aggregates varies greatly with the sample preparation method, biomass source, matrix content and cell type. Moreover, the cellulose fibril aggregates is embedded in a matrix of lignin, hemicellulose and pectin in plant cell wall, which limits the extraction and utilization of cellulose. Therefore, researchers have extensively studied the effects of different chemical pretreatment methods (ionic liquid, alkali, acid) and their influencing factors (concentration, temperature, time, etc.) on the cellulose fibril aggregates and the matrix compounds around the filament for better understanding and utilization of cellulose. Among the chemical pretreatment methods, ionic liquid treatment could cause cell wall swelling, change cellulose crystal structure, decrease crystallinity, and even separate cellulose fibril aggregates into single cellulose chain. Moreover, the solubility and dissolution pattern for cell wall components varied with ionic liquids types. Alkali treatment could effectively dissolve lignin and a small amount of hemicellulose in cell wall thus made the surface roughness and surface porosity reduced. The variation of cellulose fiber aggregate size, crystal structure and crystallinity were correlated with alkali concentration, pretreatment time and temperature. Dilute acids could dissolve hemicellulose and a small amount of lignin particles at the same time thus increase the surface roughness of cell wall. Cellulose fibril aggregates would be further hydrolyzed into cellulose nanocrystals by concentrated acid. Cellulose nanocrystals with high modulus, high specific surface area and high crystallinity can be further used as matrix, template, dispersant and reinforcement in various composite materials.
In the present review, the component units and biosynthetic process of cellulose fibril aggregates are summarized firstly, then the different size, arrangement and their influence factors of cellulose fibril aggregates in various biomass at tissue and cell levels are briefly introduced. On this basis, the mechanism and influence of different pretreatment methods (ionic liquid, alkali,andacid) on cellulose fibril aggregates of size, morphology, crystalline and crystal transition are discussed in detail. Finally, the development direction of cellulose fibril aggregates is prospected.
Key words:  cellulose fibril aggregates    size    crystal structure    chemical treatment
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TQ352  
基金资助: 十三五重点研发计划(2017YED0600804);国家自然科学基金(31500497)
作者简介:  金克霞,2015年6月毕业于中南林业科技大学,获得工学学士学位。现为国际竹藤中心博士研究生。目前主要研究领域为竹材细胞壁及纳米晶复合薄膜制备及其性能研究。
马建锋,国际竹藤中心副研究员。2008年7月本科毕业于西北农林科技大学林学专业,2014年7月在北京林业大学林产化学加工工程专业取得博士学位,主要从事木、竹、藤材细胞壁局域化学、组分分离表征以及功能性纳米纤维素制备、应用等方面的科学研究。任职期间,主持国家自然科学基金青年基金项目1项、国际竹藤中心基本科研业务费重点项目2项,参加“十三五”国家重点研发计划项目1项、国家自然科学基金青年基金项目2项,在国内外本领域重要刊物上共发表研究论文20余篇。
江泽慧,国际木材科学院院士,教授,博士生导师,木(竹藤)材科学与技术学科带头人。国际林业和草原局科技常委副主任,国际竹藤中心主任,俄罗斯圣彼得堡国立林业技术大学名誉博士。长期从事森林利用学、木材科学与技术以及生态学学科领域的教学、科研和科技管理工作,在国内外刊物发表学术论文100余篇,出版专著《世界竹藤》《木材学》《世界主要树种木材科学特性》等12部,专利12项,研究成果获国家科技进步一等奖1项,二等奖3项。
引用本文:    
金克霞,江泽慧,刘杏娥,杨淑敏,田根林,马建锋. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997-3002.
JIN Kexia, JIANG Zehui, LIU Xinge, YANG Shumin, TIAN Genlin, MA Jianfeng. Research Advance in Cellulose Fibril Aggregates Structure of Plant Cell Wall. Materials Reports, 2019, 33(17): 2997-3002.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070224  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2997
1 Zhang J, Wu J, Yu J, et al. <i>Materials Chemistry Frontiers</i>, 2017, 1(7), 1273.<br />
2 Mao Q, Yang L, Geng X, et al. <i>Advanced Materials Interfaces</i>, 2017, 4(23), 1700995.<br />
3 Shi K, Yang X, Cranston E D, et al. <i>Advanced Functional Materials</i>, 2016, 26(35), 6437.<br />
4 Xiong R, Hu K, Grant A M, et al.<i>Advanced Materials</i>,2016, 28(7), 1501.<br />
5 Chen G, Chen T, Hou K, et al.<i>Carbon</i>, 2018, 127(2018), 218.<br />
6 Abe K, Yano H.<i>Cellulose</i>, 2009, 16(6), 1017.<br />
7 Donaldson L.<i>Wood Science and Technology</i>, 2007, 41(5), 443.<br />
8 Festucci-Buselli R A, Otoni W C, Joshi C P, et al.<i>Brazilian Journal of Plant Physiology</i>, 2007, 19(1), 1.<br />
9 Ding S Y, Himmel M E.<i>Journal of Agricultural and Food Chemistry</i>, 2006, 54(3), 597.<br />
10 Somerville C, Bauer S, Brininstool G, et al.<i>Science</i>, 2004, 306(5705), 2206.<br />
11 Carrasco G C.<i>Nanoscale Research Letters</i>, 2011, 6(1), 417.<br />
12 Fahlén J, Salmén L.<i>Plant Biology</i>, 2002, 4(3), 339.<br />
13 Awano T, Takabe K, Fujita M, et al.<i>Protoplasma</i>, 2000, 212(1-2), 72.<br />
14 Zhang T, Zheng Y Z, Cosgrove D J. <i>Plant Journal</i>, 2016, 85(2), 179.<br />
15 Ding S Y, Liu Y S, Zeng Y, et al.<i>Science</i>, 2012, 338(6110), 1055.<br />
16 Thimm J C, Burritt D J, Ducker W A, et al.<i>Planta</i>, 2000, 212(1), 25.<br />
17 Cheng H, Tian G L, Fei B H. <i>Scientia Silvae Sinicae</i>, 2014, 50(4), 90 (in Chinese).<br />
陈红, 田根林, 费本华.林业科学, 2014, 50(4),90.<br />
18 Fernandes A N, Thomas L H, Altaner C M, et al.<i>Proceedings of the National Academy of Sciences of the United States of America</i>, 2011, 108(47), 1195.<br />
19 Newman R H, Hill S J, Harris P J. <i>Plant Physiology</i>, 2013, 163(4), 1558.<br />
20 Oehme D P, Doblin M S, Wagner J, et al.<i>Cellulose</i>, 2015, 22(6), 3501.<br />
21 Duchesne I, Hult E L, Molin U, et al. <i>Cellulose</i>, 2001, 8(2), 103.<br />
22 Thimm J C, Burritt D J, Ducker W A, et al.<i>Journal of Structural Biology</i>, 2009, 168(2), 337.<br />
23 Davies L M, Harris P J. <i>Planta</i>, 2003, 217(2), 283.<br />
24 Cheng H, Tian G L, Wu Z H, et al.<i>Scientia Silvae Sinicae</i>, 2016, 52(2), 99 (in Chinese).<br />
陈红, 田根林, 吴智慧, 等. 林业科学, 2016, 52(2),99.<br />
25 Kerr A J, Goring D A I. <i>Cellulose Chemistry and Technology</i>, 1975, 9, 563.<br />
26 Sell J, Zimmermann T. <i>European Journal of Wood and Wood Products</i>, 1993, 51(6), 384.<br />
27 Ji Z, Ma J F, Xu F.<i>Microscopy and Microanalysis</i>, 2014, 20(2), 566.<br />
28 Abe K, Yano H.<i>Cellulose</i>, 2010, 17(2), 271.<br />
29 Ma J F, Lv X L, Yang S M, et al.<i>Microscopy and Microanalysis</i>, 2015, 21(5), 1304.<br />
30 Zimmermann T, Thommen V, Reimann P, et al.<i>Journal of Structural Biology</i>, 2006, 156(2), 363.<br />
31 Zhang J F, Wang Y X, Zhang L Y, et al.<i>Bioresource Technology</i>, 2014, 151(1), 402.<br />
32 J rn V, Hideyo I, Szekely N K, et al. <i>Biotechnology for Biofuels</i>, 2016, 9(1), 7.<br />
33 Mittal A, Katahira R, Himmel M E, et al. <i>Biotechnology for Biofuels</i>, 2011, 4(1), 41.<br />
34 Fahlén J, Salmén L.<i>Journal of Materials Science</i>, 2003, 38(1), 119.<br />
35 Yuan T Q, Wang W, Xu F, et al.<i>Bioresource Technology</i>, 2013, 144(5), 429.<br />
36 Ling Z, Chen S, Zhang X, et al. <i>Bioresource Technology</i>, 2016, 224, 611.<br />
37 Abud Y, Costa L T, Souza W A, et al.<i>Industrial Crops and Products</i>, 2013, 51(6), 62.<br />
38 Zhou X, Ma J, Ji Z, et al. <i>Industrial Crops and Products</i>, 2014, 62, 196.<br />
39 Ji Z, Zhang X, Ling Z, et al. <i>Biotechnology for Biofuels</i>, 2015, 8(1), 103.<br />
40 Ji Z, Zhang X, Ling Z, et al.<i>Carbohydrate Polymers</i>, 2016, 154, 247.<br />
41 Ahmed I N, Santoso S P, Trannguyen P L, et al.<i>Bioresource Technology</i>, 2013, 139(7), 410.<br />
42 Singh S, Cheng G, Sathitsuksanoh N, et al.<i>Frontiers in Energy Research</i>, 2015, 2, 1.<br />
43 Wan Z, Li L, Cui S.<i>Biopolymers</i>, 2008, 89(12), 1170.<br />
44 Xu H H, Wang X M, Li Q.<i>Journal of Anhui Agricultural Sciences</i>, 2011, 39(31), 19383 (in Chinese).<br />
许欢欢, 王慢想, 李强. 安徽农业科学, 2011, 39(31), 19383.<br />
45 Sun L, Li C L, Xue Z J, et al.<i>RSC Advances</i>, 2013, 3(6), 2017.<br />
46 Ding D Y, Zhou X, Ji Z, et al.<i>Bioenergy Research</i>, 2016, 9(2), 601.<br />
47 Chen L, Wang Q, Hirth K, et al. <i>Cellulose</i>, 2015, 22(3), 1753.<br />
48 Sèbe G, Hampichavant F, Ibarboure E, et al. <i>Biomacromolecules</i>, 2012, 13(2), 570.<br />
49 Yue Y, Zhou C, French A D, et al. <i>Cellulose</i>, 2012, 19(4), 1173.<br />
50 Khili F, Borges J, Almeida P L, et al. <i>Wasteand Biomass Valorization</i>, 2018, 22, 1.<br />
51 Sacui I A, Nieuwendaal R C, Burnett D J, et al. <i>ACS Applied Materials and Interfaces</i>, 2014, 6(9), 6127.<br />
52 Vasconcelos N F, Feitosa J P A, Gama F M P D, et al. <i>Carbohydrate Polymers</i>, 2017, 155, 425.<br />
53 Zhao Y, Zhang Y, Lindstr m M E, et al. <i>Carbohydrate Polymers</i>, 2015, 117(117), 286.<br />
54 Fan X, Chen Z S, Yang Z W. <i>Applied Mechanics and Materials</i>, 2015, 713-715, 2706.<br />
55 Mariano M, Cercená R, Soldi V. <i>Industrial Crops and Products</i>, 2016, 94, 454.<br />
56 Baek C, Hanif Z, Cho S W, et al. <i>Journal of Biomedical Nanotechnology</i>, 2013, 9(7), 1293.<br />
57 Stephanie B, Maren R, Derek G G.<i>Biomacromolecules</i>, 2005, 6(2), 1048.<br />
58 Brito B S L, Pereira F V, Putaux J L, et al. <i>Cellulose</i>, 2012, 19(5), 1527.<br />
59 Bayani V B, Razal R A, Dikitanan J M R, et al. <i>Journal of Chemical and Pharmaceutical Research</i>, 2016, 2016(85), 953.<br />
60 Yang X, Cranston E D.<i>Chemistry of Materials</i>, 2014, 26(20), 6016.<br />
61 Mascheroni E, Rampazzo R, Ortenzi M A, et al. <i>Cellulose</i>, 2016, 23(1), 779.<br />
62 Neto F, Pires W, Silverio, et al. <i>Industrial Crops and Products</i>, 2013, 42(1), 480.<br />
63 Flauzino Neto W P, Mariano M, Da S I, et al.<i>Carbohydrate Polymers</i>, 2016, 153, 143.
[1] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[2] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[3] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[4] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[5] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[6] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[7] 何承绪, 杨富尧, 孟利, 刘洋, 高洁, 马光, 韩钰, 陈新. 薄规格取向硅钢中晶粒取向和尺寸对Goss晶粒异常长大的影响[J]. 《材料导报》期刊社, 2018, 32(4): 606-610.
[8] 肖轶, 徐呈艺, Ryou Min, 曹健. Cr3C2粒径对等离子堆焊铁基合金层组织与耐磨性能的影响[J]. 材料导报, 2018, 32(24): 4329-4333.
[9] 徐志勇, 冯东, 赵文波, 柴牧原, 陈玲, 陈媛. 均匀沉淀法可控制备氯化镉氨配合物[J]. 材料导报, 2018, 32(24): 4240-4247.
[10] 丁雨田,孟斌,高钰璧,高鑫,豆正义,马元俊. 固溶处理对GH3625合金板材组织及性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 243-248.
[11] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[12] 胡俊, 王杰, 李兆瑞, 吴德义. 基于随机骨料模型的EPS混凝土粒子尺寸效应分析[J]. 材料导报, 2018, 32(18): 3146-3153.
[13] 李晓成, 郑亚风, 吴晓春. 晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响[J]. 《材料导报》期刊社, 2017, 31(6): 86-92.
[14] 江世永,陶 帅,姚未来,吴世娟,蔡 涛. 高韧性纤维混凝土单轴受压性能及尺寸效应[J]. 《材料导报》期刊社, 2017, 31(24): 161-168.
[15] 梁宇, 向嵩, 梁益龙, 杨明, 魏泽民, 熊虎, 李静. 原奥氏体晶粒尺寸对珠光体钢组织及韧性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 77-81.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed