材料导报 2019, Vol. 33 Issue (z1): 84-88
无机非金属及其复合材料
|
大功率电磁波照射下超材料多物理场耦合行为
王储1 , 周珏辉2 , 周添2 , 陈亦伦1 , 宋荟荟1
1 深圳光启尖端技术有限责任公司,深圳 518000 2 深圳光启高等理工研究院,深圳 518000
Multi-physics Coupling Behavior of Metamaterials Under High Power Electromagnetic Wave Irradiation
WANG Chu1 , ZHOU Juehui2 , ZHOU Tian2 , CHEN Yilun1 , SONG Huihui1
1 Shenzhen Kuang-chi Advanced Technology Co. Ltd., Shenzhen 518000 2 Kuang-chi Institute of Advanced Technology, Shenzhen 518000
摘要 超材料由于具有超常规物理性质而被应用于新型天线罩等电磁功能部件。本工作针对大功率电磁波照射下超材料天线窗/天线罩的非线性效应进行了有限元计算。通过模拟电磁波-热耦合行为,研究连续和脉冲电磁波照射下给定超材料的发热情况及其对超材料透波率的耦合。经过优化,开发了耐受1.7 W/cm2 连续电磁波及峰值功率7 W/cm2 的超材料微结构,稳态最高温度为145 ℃,大功率照射下透波率劣化2%以内。通过样件实测,经大功率电磁波照射后,超材料平板的透波率劣化在1%以内。
关键词:
超材料
大功率电磁波
多物理场耦合
有限元仿真
Abstract: Metamaterials have smart properties capable of manipulatting electromagnetic waves, so that metamaterials are recently used in electromagnetic function products such as radome or atenna window. The non-linear effect of metamaterials used in radome or atenna window of high-power microwave was studied by finite element method. The behavior of multi-field coupling for metamaterials under high-power continuous or pulse electromagnetic wave was examined both theoretically and experimentally. After optimal design, metamaterial that were resistant to high-power microwave (with average power density of 1.7 W/cm2 for continuous electromagnetic wave or peak power density of 7 W/cm2 for pulse electromagnetic wave) were developed. The highest temperature under steady state was 145 ℃, and the degradation of transmission ratio under high-power microwave radiation was under 2%. Metamaterial samples were manufactured and tested. The degradation of transmission ratio after exposed to high-power electromagnetic wave was under 1%.
Key words:
metamaterials
high-power electromagnetic wave
multi-physics coupling
finite element simulation
出版日期: 2019-05-25
发布日期: 2019-07-05
基金资助: 深圳市科技计划项目(JCYJ20151015165322766;JSGG20170414145156935)
作者简介: 王储,2008年9月至2012年7月,在中国石油大学(华东)获得光信息科学与技术专业学士学位。2012年8月至2014年6月,在美国纽约州立大学布法罗分校获得电子工程硕士学位。研究工作主要围绕纳米材料结构设计优化以及基于纳米结构电场增强的石墨烯光电检测材料的设计与优化,通过光电场模拟软件计算及超净间纳米材料器件制备实现纳米光电材料的基础理论和应用研究。周珏辉,深圳光启高等理工研究院研究员,高级工程师。2015年浙江大学材料物理与化学专业博士毕业,2018年深圳光启高等理工研究院博士后出站并继续开展研究工作。在国内外学术期刊上发表论文20余篇,授权专利4项,主持多项科研课题。主要研究方向包括:超材料设计与制造;功能结构一体化复合材料开发;电子陶瓷及金属化研发等。juehui.zhou@kuang-chi.com
引用本文:
王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
WANG Chu, ZHOU Juehui, ZHOU Tian, CHEN Yilun, SONG Huihui. Multi-physics Coupling Behavior of Metamaterials Under High Power Electromagnetic Wave Irradiation. Materials Reports, 2019, 33(z1): 84-88.
链接本文:
http://www.mater-rep.com/CN/
或
http://www.mater-rep.com/CN/Y2019/V33/Iz1/84
1 周济. 四川大学学报(自然科学版),2005,42(2),15. 2 郭鹏斐. 超材料隐身天线罩研究.硕士学位论文, 国防科技大学,2012. 3 陈强. 吸波频率选择表面及在天线隐身中的应用研究. 硕士学位论文, 国防科技大学,2014. 4 姜治北. 高功率微波作用下的计算机系统失效机理研究.硕士学位论文, 电子科技大学,2006. 5 高雪莲, 崔振南, 陈彦宇, 等. 河北师范大学学报(自然科学版),2012(4),375. 6 Chang C, Liu G, Tang C, et al. Physics of Plasmas ,2008,15,093508. 7 Yoshio S. IEEE Transactions on Dielectrics and Electrical Insulation ,1995,2(2),243 8 杜建春. 电子对抗技术,2002,17(2),17. 9 Edmiston G, Krile J, Neuber A, et al. IEEE Transactions on Plasma Scie-nce ,2006,34(5),1782. 10 Liu C H, Behdad N. IEEE Transactions on Plasma Science ,2013,41(10),2992. 11 Li M, Behdad N. IEEE Transactions on Antennas and Propagation ,2013, 61(2),677. 12 顾超, 屈少波, 裴志斌, 等. 物理学报,2011,60(3),037801. 13 王旗, 李喆, 尹毅, 等. 绝缘材料,2013,46(2),49.
[1]
Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review [J]. Materials Reports, 2018, 32(3): 398
-404
.
[2]
Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage [J]. Materials Reports, 2018, 32(2): 282
-287
.
[3]
Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities [J]. Materials Reports, 2018, 32(2): 316
-321
.
[4]
Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support [J]. Materials Reports, 2018, 32(2): 219
-222
.
[5]
Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate [J]. Materials Reports, 2018, 32(2): 288
-294
.
[6]
XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5 Zn0.5 Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance [J]. Materials Reports, 2018, 32(6): 865
-869
.
[7]
ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model [J]. Materials Reports, 2018, 32(6): 1020
-1025
.
[8]
WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing [J]. Materials Reports, 2017, 31(1): 64
-71
.
[9]
HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber [J]. Materials Reports, 2017, 31(8): 21
-24
.
[10]
YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel [J]. Materials Reports, 2017, 31(8): 76
-81
.
Viewed
Full text
Abstract
Cited
Shared
Discussed