Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2076-2083    https://doi.org/10.11896/cldb.17120052
  高分子与聚合物基复合材料 |
镁改性蒙脱土/纤维素复合凝胶的制备及对磷酸盐的吸附性能
王佳员, 王运, 杜保保, 王吟, 张晓东
上海理工大学环境与建筑学院,上海 200093
Synthesis of Magnesium-modified Montmorillonite/Cellulose Composite Hydrogel and Its Adsorption Performance for Phosphate
WANG Jiayuan, WANG Yun, DU Baobao, WANG Yin, ZHANG Xiaodong
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093
下载:  全 文 ( PDF ) ( 2596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以纤维素为原料, 蒙脱土为填料,镁盐为改性剂,通过自由基接枝共聚合成新型镁改性蒙脱土/纤维素复合凝胶(Mg-MMT/MCC)。采用扫描电镜(SEM)、X射线衍射仪(XRD)和热重分析仪(TG)等测试了所得复合凝胶的表面形貌、微观结构和热稳定性,并对其溶胀性能进行了分析,同时研究了pH值、反应时间、温度、磷酸盐初始浓度对其吸附能力的影响。结果表明,镁改性蒙脱土的引入有利于凝胶形成明显的孔洞结构,孔径变大,孔壁变薄,且其热稳定性也有所改善。Mg-MMT/MCC对磷的吸附量随着溶液pH值的增大呈先增大后减小的趋势,在pH=7时吸附量达到最大。吸附等温数据同时符合Langmuir和Freundlich等温吸附模型,其饱和吸附容量为194.36 mg·g-1,吸附过程符合拟二级动力学方程。此外,该吸附剂易于再生和重复利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王佳员
王运
杜保保
王吟
张晓东
关键词:  纤维素  复合凝胶  镁改性  蒙脱土  磷酸盐    
Abstract: Anovel magnesium-modified montmorillonite/cellulose composite hydrogel (Mg-MMT/MCC) was prepared by free radical graft-polymerization method with cellulose as raw material, montmorillonite as filler and magnesium salt as modifier. Scanning electron microscope (SEM),X-ray diffractometer (XRD), thermogravimetric analyzer (TG) were employed to characterize the surface morphology, microstructure and thermal stability of the obtained composite hydrogel, and its swelling property was also analyzed. Meanwhile, the effects of pH value, reaction time, tempe-rature, initial phosphate concentration on the phosphate adsorption capacity of Mg-MMT/MCC were studied. It could be found from the results that the introduction of magnesium modified montmorillonite contributed to the formation of obvious pore structure with larger pore size, thinner pore wall and improved thermal stability. The amount of phosphorus adsorbed by Mg-MMT/MCC increased first and then decreased with the increase of solution pH value, reaching the maxmum at pH=7. The adsorption isotherm data accorded with both Langmuir and Freundlich isotherm adsorption models, with the saturated adsorption capacity of 194.36 mg·g-1. The adsorption kinetic was found to be conformed to the pseudo-second order model. Besides, it is worth noting that the Mg-MMT/MCC could be readily regenerated for reuse.
Key words:  cellulose    composite hydrogel    magnesium-modified    montmorillonite    phosphate
                    发布日期:  2019-05-31
ZTFLH:  TB34  
  X52  
基金资助: 国家自然科学基金(21507086);上海市青年科技英才扬帆计划(16YF1408100;14YF1409900)
通讯作者:  625xiaogui@163.com   
作者简介:  王佳员,于2016年9月至2019年5月就读于上海理工大学环境与建筑学院,主要从事水污染控制和新型环保材料研发等方向的研究。王吟,上海理工大学环境与建筑学院,讲师。2013年1月毕业于同济大学环境科学与工程学院,环境科学博士学位,主要从事水污染控制和水处理功能材料研发等方向的研究。
引用本文:    
王佳员, 王运, 杜保保, 王吟, 张晓东. 镁改性蒙脱土/纤维素复合凝胶的制备及对磷酸盐的吸附性能[J]. 材料导报, 2019, 33(12): 2076-2083.
WANG Jiayuan, WANG Yun, DU Baobao, WANG Yin, ZHANG Xiaodong. Synthesis of Magnesium-modified Montmorillonite/Cellulose Composite Hydrogel and Its Adsorption Performance for Phosphate. Materials Reports, 2019, 33(12): 2076-2083.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120052  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2076
1 Zhang W H, Rao W, Zhang Y N, et al. Journal of Agro-Environment Science, 2011, 30(10), 2061 (in Chinese).
张文豪, 饶伟, 张亚楠, 等. 农业环境科学学报, 2011, 30(10), 2061.
2 Gan F Q, Zhou J M, Wang H Y, et al. Journal of Agro-Environment Science, 2007(26), 4 (in Chinese).
干方群, 周健民, 王火焰, 等.农业环境科学学报, 2007(26), 4.
3 Hui B, Zhang Y, Ye L. Chemical Engineering Journal, 2014, 235, 207.
4 Sun D, Zhang X, Wu Y, et al. Journal of Hazardous Materials, 2010, 181 (1-3), 335.
5 Zhao D,Sengupta A K. Water Research, 1998, 32(5), 1613.
6 Hamed B H, EI-Khaiary M I. Journal of Hazardous Materials, 2008, 154, 237.
7 Tian S, Jiang P, Ping N, et al. Chemical Engineering Journal, 2009, 151(1-3), 141.
8 Yuan D H, Zhang M Q, Gao S X, et al. Environmental Chemistry, 2005, 24(1), 7 (in Chinese).
袁东海, 张孟群, 高士祥, 等. 环境化学, 2005, 24(1), 7.
9 El-Hag A A, Shawky H A, El-Rehim H A A, et al. European Polymer Journal, 2003, 39(12), 2337.
10Liu H, Rong L, Wang B, et al. Carbohydrate Polymers, 2017, 176, 299.
11Mohamad N, Buang F, Mat L A, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 105(8), 2553.
12Zhu R L, Zhu L Z, Zhu J X. Environmental Chemistry, 2006, 27(1), 91 (in Chinese).
朱润良, 朱利中, 朱建喜. 环境科学, 2006, 27(1), 91.
13Feng Q, Chen X, Zhao Y Q, et al. Colloid & Polymer Science, 2017, 295(5), 883.
14Irani M, Ismail H, Ahmad Z. Polymer Testing, 2013, 32, 502.
15Nie X, Adalati A, Du J, et al. Applied Clay Science, 2014, 97-98, 132.
16Mahdavinia G R, Massoumi B, Jalili K, et al. Journal of Polymer Research, 2012, 19(9), 1.
17Lavorgan I. Attianese G G, Bounocorea A, et al. Carbohydrate Polymers, 2014, 102, 385.
18Ahmad H, Nurunnabi M, Rahman M M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459(2), 39.
19Wang Y, Xiong Y, Wang J, et al. Catalysis Communications, 2017, 90, 14.
20Wang Y, Xiong Y, WangJ, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 903.
21Farhadnejad H, Mortazavi S A. Erfan M, et al. International Journal of Biological Macromolecules, 2018, 111, 696.
22Mahdavinia G R, Aghaie H, Sheykhloie H. Carbohydrate Polymers, 2013, 98, 358.
23Mahdavinia G R, Zhalebaghy R. Journal of Materials and Environmental Science, 2012, 3(5), 895.
24Feng Q, Chen X, Zhao Y Q, et al. Colloid & Polymer Science, 2017, 295(5), 883.
25Nie X, Adalati A, Du J, et al. Applied Clay Science, 2014, 97-98, 132.
26Ma Y, Ling L, Guo Y, et al. Polymer, 2017, 128, 12.
27Xia X, Yih J, D’Souza N A, et al. Polymer, 2003, 44, 3389.
28Ahmad R, Mirza A, Groundwater for Sustainable Development, 2017, 4, 57.
29Huang X, Xu S, Zhong M. Applied Clay Science, 2009, 42 (3), 455.
30Gilman J W. Applied Clay Science, 1999, 15(1-2), 31.
31Biswas M, Ray S S. Advances in Polymer Science, 2001, 155, 167.
32Borgnino L, Giacomelli C E, Avena M J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353(2-3), 238.
33Wang J, Yu X, Wang C, et al. Journal of Alloys & Compounds, 2017, 709.
34Mahdavinia G R, Soleymani M, Etemadi H, et al. International Journal of Biological Macromolecules, 2018, 107,719.
35Wilpiszewska K, Spychaj T, Paz'dzioch W. Carbohydrate Polymers, 2016, 136, 101.
36Bouraie M E, Masoud A A. Applied Clay Science, 2017, 140, 157.
37Deng H M, Zhang Z J, Xu N. Journal of Peking University (Natural Science), 2016, 52(3), 545(in Chinese).
邓红梅, 张紫君, 许楠. 北京大学学报(自然科学版), 2016, 52(3), 545.
38Langmuir I. Journal of Chemical Physics, 1918, 40(12), 1361.
39Aref L, Navarchina A H, Dadkhah D. Journal of Polymers and the Environment, 2017, 25, 628.
40Rahman N, Khan M F. Journal of Industrial & Engineering Chemistry, 2014, 25(3), 272.
41Bagherifam S, Komarneni S, Lakzian A, et al. Applied Clay Science, 2014, 95(5), 126.
42Su Y. Preparation and adsorption performance of wheat straw cellulous based hydrogel. Ph.D. Thesis, Shandong University, China, 2016 (in Chinese).
苏园. 秸秆基水凝胶的研制与吸附性能研究. 博士学位论文, 山东大学, 2016.
43Hui B, ZhangY, Ye L. Chemical Engineering Journal, 2014, 235, 207.
44Han Y U, Chang G L, Park J A, et al. Environmental Engineering Research, 2012, 17(3), 133.
45Singh T, Singhal R. Journal of Applied Polymer Science, 2013, 129(6), 3126.
46Nochos A, Douromis D, Bouropolos N. Carbohydrate Polymers, 2008, 74, 451.
47Omiddian H, Rocca J G, Park K. Journal of Controlled Release, 2005, 102, 3.
48Tang Y, Wang X, Li Y, et al. Carbohydrate Polymers, 2010, 82, 833.
49Yang G X, Jiang H. Water Research, 2014, 48, 396.
50Luo P, Zhao Y, Zhang, et al. Water Research, 2010, 44(5), 1489.
[1] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[2] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[3] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[4] 金克霞,江泽慧,刘杏娥,杨淑敏,田根林,马建锋. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997-3002.
[5] 陈玮, 聂艳艳, 孙晓刚, 李旭, 王杰. 碳化氟化石墨/碳纳米管/纤维素复合纸作为正极的高容量锂氟一次电池[J]. 材料导报, 2019, 33(14): 2293-2298.
[6] 王倩, 谢海波. DBU/DMSO/CO2溶剂体系中纤维素聚离子液体的合成及性质[J]. 材料导报, 2019, 33(10): 1768-1772.
[7] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[8] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[9] 白忠祥, 但年华, 但卫华, 高然. 双醛羧甲基纤维素-胶原复合止血材料的研制[J]. 材料导报, 2018, 32(20): 3628-3633.
[10] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[11] 郭妍婷, 黄雪, 尹垚骐, 陈曼, 冯光炷. 蒙脱土增强二聚酸改性不饱和聚酯树脂的制备及性能[J]. 材料导报, 2018, 32(18): 3249-3254.
[12] 张礼华,张云升,殷倩文. Li2O/K2O物质的量比对P2O5-Al2O3-BaO-Li2O-K2O磷酸盐玻璃热光性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1955-1958.
[13] 杨喜,刘杏娥,马建锋,江泽慧. 生物质基碳气凝胶制备及应用研究*[J]. 《材料导报》期刊社, 2017, 31(7): 45-53.
[14] 刘守庆, 郝旭涛, 周新涛, 贾庆明. 钙系磷酸盐化学键合材料的制备及其固化重金属研究*[J]. 《材料导报》期刊社, 2017, 31(4): 126-130.
[15] 彭红,刘洋,张锦胜,郑洪立,阮榕生. 基于毛竹半纤维素的银纳米粒子的绿色合成*[J]. 材料导报编辑部, 2017, 31(22): 35-42.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed