Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1141-1155    https://doi.org/10.11896/cldb.18040007
  无机非金属及其复合材料 |
Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用
阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明
昆明理工大学材料科学与工程学院,昆明 650000
A Review on Copper Sulfur Compounds Cu2-xS (0≤x≤1): Synthesis, Physical Properties and Applications
RUAN Zilin, HAO Zhenliang, ZHANG Hui, LU Jianchen, CAI Jinming
School of material Science and Engineering,Kunming University of Science and Technology, Kunming 650000
下载:  全 文 ( PDF ) ( 21631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜硫化合物由于具有优异的性质一直是研究人员的重点研究对象,其优点在于:(1)铜、硫两种元素储量丰富、价格低廉,对环境的影响很小,生物相容性好;(2)铜硫化合物有合适的直接带隙、等离子激元特性、高的载流子浓度及迁移率;(3)铜硫化合物结构多样、化学计量比丰富。因此,铜硫化合物在很多领域(如光电转换、传感器、电子和光电芯片、医疗等)都发挥着重要的作用。
目前,对于铜硫化合物的研究主要集中在通过对结构和形貌的控制实现单一性质的调控,从而优化其特定性能。但是大多数情况下这种调控是随机的,无法根据需要实现较为精确的制备。此外,绝大多数既有的研究都围绕在三维纳米晶,缺乏低维度下对铜硫化合物的研究,这限制了研究者对铜硫化合物性能的探索(因为在低维度下材料可能会展现出更为优异的特性)。与此同时,通过将铜硫化合物与其他材料复合实现性能优异的复合材料也是一大研究热点,但其机理尚有许多不明确的地方。另外,人们对众多非化学计量比铜硫化合物的认识还甚少,如何实现这些非化学计量比铜硫化合物的大面积、高质量可控制备,并探索其结构和性质也是目前需解决的问题。
对几种稳定相的形貌控制是目前研究铜硫化合物最成功之处,通过对实验技术的改善及实验参数的探索,实现了各种形貌的可控制备,如纳米棒、纳米颗粒、纳米线、纳米空心球、纳米片、纳米盘、纳米管、纳米薄膜以及其他一些奇特的形状。铜硫化合物基复合材料的研究主要体现在光伏电池、对电极材料和储能材料上,通过将铜硫化合物与其他硫化物、氧化物、氧化石墨烯、二氧化钛、碳材料等复合提高综合性能。近年来,计算材料学也逐渐揭示了一些铜硫化合物独特的能带结构,预测了与能带结构相关的众多性能,使得铜硫化合物显示出更为独特的魅力,但是实验上的验证和探索还需制备高质量的铜硫化合物样品。
本文结合了前人研究,对铜硫化合物的结构组成、制备技术、物理特性及实际应用进行系统详尽的归纳,对当前的研究热点进行分析总结及展望,以期为铜硫化合物的研究提供参考和指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阮子林
郝振亮
张辉
卢建臣
蔡金明
关键词:  铜硫化合物  物理性能  纳米材料  半导体    
Abstract: Copper sulfur compounds have always been the research focus owing to their excellent properties, which can be concluded into the following three aspects. Ⅰ.Copper and sulfur are rich in reserves, low in price, exerting little impact on the environment, and showing good biocompatibility.Ⅱ. Copper sulfur compounds are endowed with appropriate direct band gaps, plasmonic properties, high charge carrier concentrations and motilities. Ⅲ.The structural and stoichiometric diversity of copper sulfur compounds enable the fine-tuning of their properties. Accordingly, copper sulfur compounds play a significant role in various fields, such as photoelectric conversion, electronic and optoelectronic chip, medical treatment.
Currently, researches on copper sulfur compounds mainly concentrate on tailoring their structure and morphology to realize the control of a single property, so as to optimize their performance for specific purpose. Unfortunately, the tuning processes are random in most cases, precise preparation according to special demand seems hard to achieve. Besides, existing researches primarily focus on the three dimensional nanocrystals, few research pay attention to copper sulfur compounds in low-dimension, despite most materials may exhibit better properties in low-dimension, which hinder the deep exploration of properties of copper sulfur compounds. In addition, it is also a research hot spot to combine copper sulfur compounds with other materials to achieve superior performance, and various Cu2-xS-based composites have been reported, yet the mechanism still remain confused. moreover, researchers are still not familiar with non-stoichiometric copper sulfur compounds, therefore, it is an urgent issue to realize controllable preparation of these compounds with large area and high quality, and explore their structures as well as properties.
The present research of copper sulfur compounds are highlighted by the morphology control of several stable phases. Various morphologies like nanorods, nanoparticles, nanowires, nanospheres, nanosheets, nanoplates, thin films and other unique morphologies have been achieved via the optimization of experimental technique and parameters, and their size can also be controlled in certain degree. The application research of Cu2-xS-based composites mainly lies in photoelectric batteries, counter electrode materials and energy storage batteries. The performance of these devices and materials are mainly enhanced by combing Cu2-xS and other sulfides, oxides, rGO, TiO2 or carbon materials. In recent years, computational materials science has revealed the idiographic view structure of Cu2-xS, and some properties related to the band structure have also been predicted, more charming properties of Cu2-xS remain unexplored. Yet the experimental verification and exploration are premised on the preparation of Cu2-xS with high quality.
In this review, we summarize the existing researches on copper sulfur compounds, giving an expound of their structural configurations, preparation techniques, physical properties and applications. We hope that this review will offer some basic information concerning copper sulfur compounds and believe copper sulfur compounds will play an even bigger role in our real life.
Key words:  copper sulfur compounds    physical properties    nanomaterials    semiconductors
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  O472  
基金资助: 国家自然科学基金(11674136);千人计划青年人才项目(1097816002);云南省引进海外高层次人才项目(1097816002);云南省中青年学术带头人预备人才项目 (2017HB010);昆明理工大学青蓝计划(1407840010);昆明理工大学分析测试基金(2016T20150019;2017m20162130005)
通讯作者:  j.cai@kmust.edu.cn   
作者简介:  阮子林,2016年毕业于武汉工程大学,获得理学学士学位。现为昆明理工大学材料科学与工程学院博士研究生。目前主要研究低维纳米结构Cu2-xS的制备与表征。蔡金明,云南大理人,博士, 教授,博士研究生导师,国家“千人计划”青年人才,云南省百名海外高层次人才, 云南省中青年学术带头人预备人才, 校“青蓝计划”人才。 2003 年北京大学物理学系获学士学位, 2009 年中国科学院物理研究所获理学博士学位。2008 年到美国橡树岭国家实验室做访问学者, 2009—2014 年在瑞士联邦材料科学与技术研究所做博士后。蔡金明发表SCI 学术论文26 篇, 包括以第一作者发表在世界顶级学术期刊NatureNature Nanotechnology上的文章,总引用超过3 200 次(据Web of Science)。其科研成果入选英国Nature出版社评选的“image of the year, 2010”, 并获得瑞士2011 年EmPA 研究奖。他还是中国材料学会青年工作委员会理事,《中国化学快报》青年编委,长期担任多个SCI 期刊审稿人。
引用本文:    
阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
RUAN Zilin, HAO Zhenliang, ZHANG Hui, LU Jianchen, CAI Jinming. A Review on Copper Sulfur Compounds Cu2-xS (0≤x≤1): Synthesis, Physical Properties and Applications. Materials Reports, 2019, 33(7): 1141-1155.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040007  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1141
1 Li W, Shavel A, Guzman R, et al.Chemical Communications, 2011, 47(37), 10332.
2 Coughlan C, Ibáñez m, Dobrozhan O, et al. Chemical Reviews, 2017, 117(9), 5865.
3 Yu L, Luo K, Chen S, et al. CrystEngComm, 2015, 17(14), 2878.
4 Luther J m, Jain P K, Ewers T, et al.Nature materials, 2011, 10(5), 361.
5 Weber T, Prins R, Rutger A van Santen, eds. Transition metal sulphides: Chemistry and catalysis,Springer Science & Business media, UK, 2013.
6 Lukashev P, Lambrecht W R L, Kotani T, et al.Physical Review B, 2007, 76(19), 195202.
7 Hirahara E. Journal of the Physical Society of Japan, 1951, 6(6), 422.
8 Zhao Y, Burda C. Energy & Environmental Science, 2012, 5(2), 5564.
9 Faleev S V, van Schilfgaarde m, Kotani T. Physical Review Letters,2004,93, 126406.
10 Evans H T. Nature, 1971, 232(29), 69.
11 Xu Q, Huang B, Zhao Y, et al. Applied Physics Letters, 2012, 100(6), 061906.
12 Evans H T. Science, 1979, 203(4378), 356.
13 mumme W G, Gable R W, Petrˇícˇek V. The Canadian mineralogist, 2012, 50(2), 423.
14 Powell A E, Hodges J m, Schaak R E. Journal of the American Chemical Society, 2016, 138(2), 471.
15 Ha D H, Caldwell A H, Ward m J, et al.Nano Letters, 2014, 14(12), 7090.
16 Lukashev P, Lambrecht W R L, Kotani T, et al. Physical Review B, 2007, 76(19), 195202.
17 Putnis A. American mineralogist, 1977, 62(1-2), 107.
18 Evans H T. American mineralogist, 1981, 66(7-8), 807.
19 morales-García A, Soares Jr A L, Dos Santos E C, et al.The Journal of Physical Chemistry A, 2014, 118(31), 5823.
20 Du W, Qian X, ma X, et al.Chemistry — A European Journal, 2007, 13(11), 3241.
21 Grijalva H, Inoue m, Boggavarapu S, et al.Journal of materials Chemistry, 1996, 6(7), 1157.
22 Du Y, Yin Z, Zhu J, et al.Nature Communications, 2012, 3, 1177.
23 Lim W P, Wong C T, Ang S L, et al. Chemistry of materials, 2006, 18(26), 6170.
24 Larsen T H, Sigman m, Ghezelbash A, et al. Journal of the American Chemical Society, 2003, 125(19), 5638.
25 Chen L, Chen Y B, Wu L m. Journal of the American Chemical Society, 2004, 126(50), 16334.
26 Wang S, Yang S, Dai Z R, et al. Physical Chemistry Chemical Physics 2001, 3, 3750.
27 Sigman m B, Ghezelbash A, Hanrath T, et al.Journal of the American Chemical Society, 2003, 125(51), 16050.
28 mondal G, Bera P, Santra A, et al. New Journal of Chemistry, 2014, 38(10), 4774.
29 Zhao F, Chen X, Xu N, et al.Journal of Physics & Chemistry of Solids, 2006, 67(8), 1786.
30 Li Y, Zhang L, Yu J C, et al. Progress in Natural Science: materials International, 2012, 22(6),585.
31 Peng m, ma L L, Zhang Y G, et al.materials Research Bulletin, 2009, 44(9), 1834.
32 Tang A, Qu S, Li K, et al. Nanotechnology, 2010, 21(28), 285602.
33 Han F, Li W C, Li D, et al. ChemElectroChem, 2014, 1(4), 733.
34 Gorai S, Ganguli D, Chaudhuri S.materials Chemistry and Physics, 2004, 88(2), 383.
35 Li B, Huang L, Zhao G, et al.Advanced materials, 2016, 28(37), 8271.
36 martinson A B F, Riha S C, Thimsen E, et al.Energy & Environmental Science, 2013, 6(6), 1868.
37 Chen S G, Huang Y F, Liu Y Q, et al. materials Letters, 2008, 62(16), 2503.
38 Bagul S V, Chavhan S D, Sharma R. Journal of Physics and Chemistry of Solids, 2007, 68(9), 1623.
39 Grozdanov I, Najdoski m.Journal of Solid State Chemistry, 1995, 114(2), 469.
40 Podder J, Kobayashi R, Ichimura m.Thin Solid Films, 2005, 472(1), 71.
41 Quintana-Ramirez P V, Arenas-Arrocena m C, Santos-Cruz J, et al. Beilstein Journal of Nanotechnology, 2014, 5(1), 1542.
42 Fu W, Liu L, Yang G, et al. Particle & Particle Systems Characterization, 2015, 32(9), 907.
43 Bryks W, Wette m, Velez N, et al.Journal of the American Chemical Society, 2014, 136(17), 6175.
44 Rastogi A C, Salkalachen S, Bhide V G.Thin Solid Films, 1978, 52(1), 1.
45 Nascu C, Pop I, Ionescu V, et al.materials Letters, 1997, 32(2-3), 73.
46 Jiang D, Hu W, Wang H, et al.Journal of Colloid and Interface Science, 2011, 357(2), 317.
47 Bouroushian m.Electrochemistry of metal chalcogenides. Springer Science & Business media, UK, 2010.
48 Jiang X, Xie Y, Lu J, et al.Journal of materials Chemistry, 2000, 10(9), 2193.
49 Zhang Y, Wang Y, Xi L, et al.The Journal of Chemical Physics, 2014, 140(7), 074702.
50 Zhang Y, Xi L, Wang Y, et al.Computational materials Science, 2015, 108, 239.
51 Zhang Y, Wang Y, Zhang J, et al.The Journal of Chemical Physics, 2016, 144(19), 194706.
52 Cheng L, Wang C, Feng L, et al.Chemical Reviews, 2014, 114(21), 10869.
53 Jain P K, Huang X, El-Sayed I H, et al.Accounts of Chemical Research, 2008, 41(12), 1578.
54 Ozbay E. Science, 2006, 311(5758), 189.
55 Jain P K, Huang X, El-Sayed I H, et al. Plasmonics, 2007, 2(3), 107.
56 Huang X, Jain P K, El-Sayed I H, et al.Lasers in medical Science, 2008, 23(3), 217.
57 Luther J m, Jain P K, Ewers T, et al. Nature materials, 2011, 10(5), 361.
58 Zhao Y, Pan H, Lou Y, et al. Journal of the American Chemical Society, 2009, 131(12), 4253.
59 Liu X, Wang X, Zhou B, et al. Advanced Functional materials, 2013, 23(10), 1256.
60 Wang X, Ke Y, Pan H, et al. ACS Catalysis, 2015, 5(4), 2534.
61 Kriegel I, Jiang C, Rodríguez-Fernández J, et al. Journal of the American Chemical Society, 2012, 134(3), 1583.
62 Scotognella F, Della Valle G, Kandada A R S, et al. The European Physical Journal B, 2013, 86(4), 154.
63 Byer R L. Photonics Spectra, 1995, 29(1), 103.
64 Li Z, Qian X, Xiao Z, et al. Chemical Physics Letters, 2014, 612, 219.
65 mary K A A, Unnikrishnan N V, Philip R. APL materials, 2014, 2(7), 076104.
66 Klimov V I, Haring-Bolivar P, Kurz H, et al. Superlattices and microstructures, 1996, 20(3), 395.
67 Klimov V, Haring Bolivar P, Kurz H, et al.Applied Physics Letters, 1995, 67(5), 653.
68 Klimov V I, Karavanskii V A. Physical Review B, 1996, 54(11), 8087.
69 Xie Y, Riedinger A, Prato m, et al. Journal of the American Chemical Society, 2013, 135(46), 17630.
70 mou J, Liu C, Li P, et al. Biomaterials, 2015, 57, 12.
71 Liu H, Shi X, Xu F, et al. Nature materials, 2012, 11(5), 422.
72 He Y, Day T, Zhang T, et al. Advanced materials, 2014, 26(23), 3974.
73 Lu L, Yang H X. Applied Energy, 2010, 87(12), 3625.
74 Fthenakis V m, Kim H C, Alsema E. Environmental Science & Technology, 2008, 42(6), 2168.
75 Bube R H.Photovoltaic materials, World Scientific Publishing Company, Singapore, 1998.
76 Liang Y, Shao m, Liu L, et al.Catalysis Communications, 2014, 46, 128.
77 Xu m, Wang m, Ye T, et al. Chemistry — A European Journal, 2014, 20(42), 13576.
78 Basu m, Sinha A K, Pradhan m, et al. Environmental Science & Technology, 2010, 44(16), 6313.
79 manzi A, Simon T, Sonnleitner C, et al. Journal of the American Chemical Society, 2015, 137(44), 14007.
80 Okamoto K, Kawai S. Japanese Journal of Applied Physics, 1973, 12(8), 1130.
81 Li X, He X, Shi C, et al. ChemSusChem, 2014, 7(12), 3328.
82 Dampier F W.Journal of the Electrochemical Society, 1981, 128(12), 2501.
83 Oszajca m F, Bodnarchuk m I, Kovalenko m V.Chemistry of materials, 2014, 26(19), 5422.
84 Poizot P, Laruelle S, Grugeon S, et al.Nature, 2000, 407(6803), 496.
85 Du Y, Yin Z, Zhu J, et al.Nature Communications, 2012, 3, 1177.
86 Li Y, Lu W, Huang Q, et al.Nanomedicine, 2010, 5(8), 1161.
87 Jain P K, Lee K S, El-Sayed I H, et al.Journal of Physical Chemistry B, 2006, 110(14), 7238.
88 Cui J, Jiang R, Xu S, et al. Small, 2015, 11(33), 4183.
89 Tian Q, Tang m, Sun Y, et al.Advanced materials, 2011, 23(31), 3542.
90 Fang J, Seki T, maeda H.Advanced Drug Delivery Reviews, 2009, 61(4), 290.
91 Wang Y, Xiao Y, Zhou H, et al. RSC Advances, 2013, 3(45), 23133.
92 Wang L. RSC Advances, 2016, 6(86), 82596.
93 Ku G, Zhou m, Song S, et al. ACS Nano, 2012, 6(8), 7489.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[4] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[7] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[8] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[9] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[10] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[11] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[12] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[13] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[14] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[15] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed