Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1004-1009    https://doi.org/10.11896/j.issn.1005-023X.2018.06.028
  计算模拟 |
通过晶格失配调节有盖层张应变Ge量子点的光电特性
陈其苗1, 2, 宋禹忻1, 张振普1, 刘娟娟1, 芦鹏飞3, 李耀耀1, 王庶民1, 4, 龚谦1
1 中国科学院上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海 200050;
2 中国科学院大学,北京 100049;
3 北京邮电大学信息光子学与光通信研究院,信息光子学与光通信国家重点实验室,北京 100089;
4 查尔姆斯理工大学,微技术和纳米科学系,瑞典哥德堡
Tuning the Optoelectronic Properties of Capped Tensile-strained Ge Quantum Dots by Lattice Mismatch
CHEN Qimiao1, 2, SONG Yuxin1, ZHANG Zhenpu1, LIU Juanjuan1, LU Pengfei3, LI Yaoyao1, WANG Shumin1, 4, GONG Qian1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai 200050;
2 University of Chinese Academy of Sciences, Beijing 100049;
3 State Key Laboratory of Information Photonics and Optical Communications of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100089;
4 Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
下载:  全 文 ( PDF ) ( 1567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Ge与不同衬底形成的不同晶格失配度来调节有盖层的张应变Ge量子点的光电特性。通过有限元方法模拟并获得张应变Ge量子点内的应变分布, 而后通过形变势理论和有效质量近似计算得到量子点的电子结构。与无盖层张应变Ge量子点相比,有盖层Ge量子点能保持更大的应变量。另外,随着量子点尺寸和晶格失配度的增大,导带Γ谷与导带L谷的能量差缩减,最终使Ge转变为直接带隙材料。直接带隙能量随着量子点尺寸的增大而减小。该研究结果表明张应变Ge量子点是制备包含激光器在内的Si基光源的理想材料,在未来光电子应用中有巨大潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈其苗
宋禹忻
张振普
刘娟娟
芦鹏飞
李耀耀
王庶民
龚谦
关键词:  张应变Ge  量子点  有限元  有效质量法  直接带隙    
Abstract: The optoelectronic properties of capped tensile-strained Ge quantum dot (QD) was studied with different lattice mismatch, which was formed by Ge and various substrate. The strain distribution of Ge QDs were simulated with the aid of finite element method (FEM) and the electronic structures of capped tensile-strained Ge QDs under such strain was calculated via deformation potential theory and effective mass approach (EMA). The size effect of Ge QDs was also considered. It was found that the capped QDs hold larger strain than the uncapped ones. In addition, the energy difference between Γ and L conduction valley reduced with the increase of the QD size and the lattice mismatch, thus converting the Ge QDs into the direct band gap material. The energy of the direct band gap decreased with the increase of the QDs’ size. This work shows that the tensile-strained Ge QD is a promising light emission material for future optoelectronic applications such as lasers on Si.
Key words:  tensile-strained Ge    quantum dot    finite element method    effective mass approach    direct band gap
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  O472  
基金资助: 国家自然科学基金(61404153); 上海浦江人才计划(14PJ1410600); 国家自然科学基金重点项目(61334004); 国家重点基础研究发展规划(973计划)(2014CB643902); 中国科学院战略性先导专项(XDA5-1); 中国科学院重点项目(KGZD-EW-804); 国家自然科学基金创新研究组项目(61321492); 中国科学院高迁移率材料工程国际合作与创新项目; 信息功能材料重点实验室开放项目
通讯作者:  宋禹忻,男,1981年生,博士,助理研究员,研究方向为半导体光电材料与器件 E-mail:songyuxin@mail.sim.ac.cn   
作者简介:  陈其苗:男,1990年生,博士研究生,研究方向为半导体光电材料与器件 E-mail:chenqm007@gmail.com
引用本文:    
陈其苗, 宋禹忻, 张振普, 刘娟娟, 芦鹏飞, 李耀耀, 王庶民, 龚谦. 通过晶格失配调节有盖层张应变Ge量子点的光电特性[J]. 材料导报, 2018, 32(6): 1004-1009.
CHEN Qimiao, SONG Yuxin, ZHANG Zhenpu, LIU Juanjuan, LU Pengfei, LI Yaoyao, WANG Shumin, GONG Qian. Tuning the Optoelectronic Properties of Capped Tensile-strained Ge Quantum Dots by Lattice Mismatch. Materials Reports, 2018, 32(6): 1004-1009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.028  或          http://www.mater-rep.com/CN/Y2018/V32/I6/1004
1 Saraswat K,Chui C,Krishnamohan T, et al. High performance germanium MOSFETs[J].Materials Science and Engineering:B,2006,135(3):242.
2 Jain S C, Decoutere S, Willander M, et al. SiGe HBT for application in BiCMOS technology: Ⅱ. Design, technology and performance[J].Semiconductor Science and Technology,2001,16(7):R67.
3 Michel J, Liu J,Kimerling L C. High-performance Ge-on-Si photodetectors[J].Nature Photonics,2010,4(8):527.
4 Boucaud P, El Kurdi M, Ghrib A, et al. Recent advances in germanium emission[J].Photonics Research,2013,1(3):102.
5 Liu J, Sun X, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature[J].Optics Letters,2010,35(5):679.
6 Posthuma N E, van der Heide J, Flamand G,et al. Emitter formation and contact realization by diffusion for germanium photovoltaic devices[J].IEEE Transactions on Electron Devices,2007,54(5):1210.
7 Fischetti M V, Laux S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys[J].Journal of Applied Physics,1996,80(4):2234.
8 Bai Y, Lee K E, Cheng C, et al. Growth of highly tensile-strained Ge on relaxed InxGa1-x As by metal-organic chemical vapor deposition[J].Journal of Applied Physics,2008,104(8):84518.
9 Ishikawa Y, Wada K,Cannon D D, et al. Strain-induced band gap shrinkage in Ge grown on Si substrate[J].Applied Physics Letters,2003,82(13):2044.
10 Jakomin R, de Kersauson M, El Kurdi M, et al. High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition[J].Applied Phy-sics Letters,2011,98(9):091901.
11 Huo Y,Lin H,Chen R, et al. Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy[J].Applied Physics Letters,2011,98(1):96.
12 de Kersauson M, Prost M, Ghrib A, et al. Effect of increasing thickness on tensile-strained germanium grown on InGaAs buffer layers[J].Journal of Applied Physics,2013,113(18):183508.
13 Fang Y Y,Tolle J,Roucka R, et al. Perfectly tetragonal, tensile-strained Ge on Ge1-ySny buffered Si(100)[J].Applied Physics Letters,2007,90(6):10.
14 Nam D, Sukhdeo D,Cheng S L, et al. Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser[J].Applied Physics Letters,2012,100(13):1.
15 Nam D, Sukhdeo D, Roy A, et al. Strained germanium thin film membrane on silicon substrate for optoelectronics[J].Optics Express 19(27):25866.
16 Boztug C, Sanchez-Perez J R,Sudradjat F F,et al. Tensilely strained germanium nanomembranes as infrared optical gain media[J].Small,2013,9(4):622.
17 Lim P H, Park S, Ishikawa Y, et al. Enhanced direct bandgap emission in germanium by micromechanical strain engineering[J].Optics Express,2009,17(18):16358.
18 El Kurdi M, Bertin H,Martincic E,et al. Control of direct band gap emission of bulk germanium by mechanical tensile strain[J].Applied Physics Letters,2010,96(4):2012.
19 Sanchez-Perez J R, Boztug C,Chen F,et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes[J].Procee-dings of the National Academy of Sciences,2011,108(47):18893.
20 Chen Q,Song Y, Wang K, et al. A new route toward light emission from Ge: Tensile-strained quantum dots[J].Nanoscale,2015,7:8725.
[1] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[2] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[3] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[4] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[5] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[6] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[7] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[8] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[9] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[10] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[11] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[12] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[13] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[14] 钟汝能, 郑勤红, 向泰, 姚斌. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报, 2018, 32(24): 4258-4263.
[15] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed