Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3266-3270    https://doi.org/10.11896/j.issn.1005-023X.2018.18.030
  高分子与聚合物基复合材料 |
PVA纤维体积率对PVA-ECC力学性能的影响
祝和意, 张少峰
陕西铁路工程职业技术学院,陕西省高性能混凝土工程实验室,渭南 714099
Effect of PVA Fiber Volume Fraction on the Mechanical Properties of PVA-ECC
ZHU Heyi, ZHANG Shaofeng
Shaanxi Province Engineering Laboratory of High Performance Concrete, Shaanxi Railway Institute, Weinan 714099
下载:  全 文 ( PDF ) ( 1932KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用国产基体材料并利用铁尾矿砂细骨料替代天然砂,掺入长度为12 mm的PVA纤维,制备铁尾矿砂细骨料PVA纤维水泥基复合材料(PVA-ECC),并通过实验研究了PVA纤维体积率对PVA-ECC性能的影响。实验结果表明:PVA-ECC的工作性能和基本力学性能稳定,制备工艺满足要求。PVA纤维体积率对提高PVA-ECC抗压强度的作用不明显,体积率在1.6%~2%时,PVA-ECC破坏后的整体性较好,体积率为2%时最佳,但过量的PVA纤维掺入会降低其抗压强度。PVA纤维体积率对PVA-ECC韧性的影响显著,体积率在1.6%~2%时,韧性明显增加,体积率为2%时的效果最佳,其极限荷载和抗弯强度达到峰值,弯曲韧性指标显著增大,试件破坏前出现多缝开裂现象,呈现韧性破坏特征;通过韧性指数法判定PVA-ECC为韧性材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祝和意
张少峰
关键词:  PVA纤维水泥基复合材料  体积率  力学性能    
Abstract: A series of PVA fiber-reinforced cement-based composite (PVA-ECC), differing in 12 mm-long PVA fiber’s volume fraction, were prepared by using fine aggregate of iron tailings and substituting a domestic matrix material for natural sand. And the influence of the PVA fiber volume fraction on the mechanical properties of PVA-ECC was investigated. The experimental results confirmed that the working performance and basic mechanical properties of PVA-ECC were stable, and the preparation process met the requirements. The fiber volume fraction did not exert obvious effect on the improvement of the compressive strength of PVA-ECC. When the fiber volume fraction was 1.6%—2%, the integrity of PVA-ECC was good after destruction, the best result was 2%. However, the excessive PVA fibers would reduce their compressive strength. The PVA fiber volume fraction had a significant effect on the toughness of PVA-ECC. When the fiber volume fraction was 1.6%—2%, the toughness increased obviously, the best result was 2%, which ultimate load and the bending strength reached the peak values and the bending toughness index increased significantly. The phenomenon of multiple cracking occurred with the characteristics of ductile failure before the sample destruction, and the PVA-ECC could be determined as a ductile material by the toughness index method.
Key words:  PVA fiber-reinforced cement-based composite    volume fraction    mechanical properties
                    发布日期:  2018-10-18
ZTFLH:  TU528  
基金资助: 陕西省教育厅专项科研课题(17JK0168);陕西省高性能混凝土工程实验室专项课题(KY2016-28)
作者简介:  祝和意:男,1979年生,硕士,副教授,主要从事复合材料及施工技术研究 E-mail:zhuheyi791128@163.com
引用本文:    
祝和意, 张少峰. PVA纤维体积率对PVA-ECC力学性能的影响[J]. 材料导报, 2018, 32(18): 3266-3270.
ZHU Heyi, ZHANG Shaofeng. Effect of PVA Fiber Volume Fraction on the Mechanical Properties of PVA-ECC. Materials Reports, 2018, 32(18): 3266-3270.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.030  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3266
1 Wang Y,Sun L Z, et al.Elastic modulus research of PVA cement based composite material[J].Concrete,2015(11):53(in Chinese).
王雨,孙林柱,等.PVA水泥基复合材料弹性模量研究[J].混凝土,2015(11):53.
2 Cui Z L,Lu S S,Wang Z S,et al. Influence of recycled aggregate on strength and anti-carbonation properties of recycled aggregate concrete[J].Journal of Building Materials,2012,15(2):264(in Chinese).
崔正龙,路沙沙,汪振双,等.再生骨料特性对再生混凝土强度和碳化性能的影响[J].建筑材料学报,2012,15(2):264.
3 Li G Y,Huo L,Zhang T,et al.Uniaxial tensile properties of engineered cementitious composites[J]. Materials Review,2013,27(S1):298(in Chinese).
李国友,霍亮,张涛,等.高延性纤维增强水泥基复合材料的直接拉伸性能[J].材料导报,2013,27(专辑21):298.
4 Wang Z W,Liu S G,Yan C W,et al.Time-varying modification of chloride diffusion coefficients of PVA-FRCC[J].Materials Review,2015,29(S1):114(in Chinese).
王志伟,刘曙光,闫长旺,等.PVA纤维增强水泥基复合材料氯离子扩散系数时变修正[J].材料导报,2015,29(专辑25):114.
5 Zhang S F,Wang X.Experimental study on mechanical properties of high toughness fiber reinforced[J].Science & Technology Vision,2016(25):392(in Chinese).
张少峰,王雪.PVA纤维增强尾矿砂水泥基复合材料力学性能研究[J].科技视界,2016(25):392.
6 鲍文博,张少峰.混合细骨料水泥基复合材料铁尾矿砂替代比例的研究[J].混凝土与水泥制品,2013(6):81.
7 Wang Y B.Study on performance of PVA-fiber-reinforced cement-based composite materials[D].Chongqing: Chongqing University,2005(in Chinese).
王永波.PVA纤维增强水泥基复合材料的性能研究[D].重庆:重庆大学,2005.
8 Li Y,Liang X W,Liu Z J.PVA fiber reinforced cementitious compo-sites: Performance and design[J].Concrete,2009(12):54(in Chinese).
李艳,梁兴文,刘泽军.PVA纤维增强水泥基复合材料:性能与设计[J].混凝土,2009(12):54.
9 Yan C W,Zhang J,Jia J Q.Evaluation of ratio between splitting tensile strength and compressive strength of high modulus polyvinyl alcohol (PVA) fiber reinforced iltra high strength concrete[J].Ournal of Inner Mongolia University of Technology(Natural Science Edition),2012,31(1):58(in Chinese).
闫长旺,张菊,贾金青.高弹模PVA纤维超高强混凝土拉压比试验研究[J].内蒙古工业大学学报(自然科学版),2012,31(1):58.
10 Wang H C,Zhang L L,Gao S L,et al.Experimental study on inf-luence of PVA fiber on mechanical properties of engineered cementitious composites[J].Concrete,2013(4):4(in Chinese).
王海超,张玲玲,高淑玲,等.PVA纤维对超高韧性纤维增强水泥基复合材料力学性能的影响[J].混凝土,2013(4):4.
11 高淑玲,徐世烺.PVA纤维增强水泥基复合材料单轴抗压试验研究[J].混凝土与水泥制品,2009(6):43.
12 Liu S G,Deng Y H,Zhang J,et al.Research on bond behavior between PVA fiber reinforced cementitious composites and rebar[J].Journal of Functional Materials,2016,47(1):1110(in Chinese).
刘曙光,邓轶涵,张菊,等.PVA纤维水泥基复合材料与钢筋粘结性能研究[J].功能材料,2016,47(1):1110.
13 Wang H Y,Tian W L,Qin L B,et al.Dosage of fly ash on the mechanical properties of PVA cementitious composites[J].Bulletin of the Chinese Ceramic Society,2015,34(10):2997(in Chinese).
王浩宇,田稳苓,卿龙邦,等.粉煤灰掺量对PVA纤维水泥基复合材料力学性能影响研究[J].硅酸盐通报,2015,34(10):2997.
14 Li Y,Liu Z J,Liang X W.Tensile performance of high performance PVA fiber reinforced cementitious composites under uniaxial tension[J].Engineering Mechanics,2013,30(1):322(in Chinese).
李艳,刘泽军,梁兴文.高性能PVA纤维增强水泥基复合材料单轴受拉特性[J].工程力学,2013,30(1):322.
15 Jiang H J,Liu S G, et al.PVA fiber cement matrix composites research uniaxial compression tests[J].Concrete,2014(6):81(in Chinese).
姜海军,刘曙光,等.PVA纤维水泥基复合材料单轴受压试验研究[J].混凝土,2014(6):81.
16 Xue H Q,Deng Z C,Li J H.Tensile performance and toughness of PVA fiber reinforced cementitious composites[J].Journal of Zhengzhou University(Engineering Science),2009,30(1):92(in Chinese).
薛会青,邓宗才,李建辉.PVA纤维水泥基复合材料的抗拉性能及韧性研究[J].郑州大学学报(工学版),2009,30(1):92.
17 Niu H M,Wu W H,Xing Y M,et al.Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites[J].Acta Materiae Compositae Sinica,2015,32(4):1067(in Chinese).
牛恒茂,武文红,邢永明,等.水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响[J].复合材料学报,2015,32(4):1067.
18 Liu S G,Zheng D L,Yan C W,et al.Experimental study of ratio between splitting tensile strength and compressive strength for PVA fiber cementitious composites[J].Journal of Civil,Architectural & Environmental Engineering,2013,35(S1):134(in Chinese).
刘曙光,郑德路,闫长旺,等.聚乙烯醇纤维水泥基复合材料拉压比试验研究[J].土木建筑与环境工程,2013,35(S1):134.
19 Liu S G,Yan M,Yan C W,et al.Deicing salt resistance of PVA fiber reinforced cementitious composite[J].Journal of Jilin University(Engineering and Technology Edition),2012,42(1):63(in Chinese).
刘曙光,闫敏,闫长旺,等.聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J].吉林大学学报(工学版),2012,42(1):63.
20 Gao S L,Xu S L.Experimental research on tension property of polyvinyl alcohol fiber reinforced cementitious composites[J].Journal of Dalian University of Technology,2007(2):233(in Chinese).
高淑玲,徐世烺.PVA纤维增强水泥基复合材料拉伸特性试验研究[J].大连理工大学学报,2007(2):233.
21 Cai X R,Xu S L.Study on corresponding relationships between fle-xural load-deformation hardening curves and tensile stress-strain har-dening curves of UHTCC[J].Engineering Mechanics,2010,27(1):8(in Chinese).
蔡向荣,徐世烺.UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究[J].工程力学,2010,27(1):8.
22 Naaman A E,Reinhardt H W. Characterization of high perfomance fiber reinforced cement composites[C] ∥Proceedings of the Second International RILEM Workshop.USA,1995.
23 Zhang S F,Wang X.Experimental investigation on the fracture energy of green PVA-tailings cement-based composites[J].New Building Materials,2017,44(5):77(in Chinese).
张少峰,王雪.PVA纤维尾矿砂水泥基复合材料断裂能试验研究[J].新型建筑材料,2017,44(5):77.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed