Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1820-1826    https://doi.org/10.11896/j.issn.1005-023X.2018.11.008
  材料综述 |
用于蛋白质结晶的形核剂研究综述
石苗,侯海,FiazAhmad,尹大川
西北工业大学生命学院,空间生物实验模拟技术国防重点学科实验室,西安 710072
Nucleating Agents Applying to Protein Crystallization: a Review
SHI Miao, HOU Hai, Fiaz Ahmad, YIN Dachuan
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 获取蛋白质晶体是蛋白质三维结构解析、医疗药品生产、自组装纳米体系构建等过程中重要的步骤。例如,利用X射线衍射技术对蛋白质进行三维结构解析时,首先需要通过结晶条件筛选,获得质量较高的蛋白质晶体,进而进行衍射得到蛋白质结构相关信息。蛋白质结晶需要经历从未饱和区经亚稳区至形核区的形核过程以及从形核区到亚稳区的生长成熟过程。在整个蛋白质结晶过程中,形核过程是至关重要的一步。均相形核过程中,结晶体系中各个部分形核概率相同,当蛋白质结晶体系中溶液的过饱和度足够克服形核势垒时,在形核区发生成核,因而在低浓度的结晶溶液体系中,均相形核存在一定的局限性。
    形核剂的添加使蛋白质晶体异相形核,相较于均相形核其需要克服的阻力小,形核势垒低。因而形核剂的使用对于难结晶蛋白或者起始浓度过低的蛋白质结晶具有重要意义。随着结构生物学的发展,形核剂在蛋白质结晶中的研究仍是结晶方法学领域的热点问题。
    多孔微球对蛋白质分子的吸附作用有利于无序蛋白质分子团簇的形成,进而促进蛋白质形核。添加多孔微球不但可以增加结晶条件筛选数,也可以提高晶体质量。促进蛋白质分子有序排列的形核剂籽晶的使用,使晶体的形核生长过程始终处于结晶体系溶液浓度较低的状态,而交联的籽晶因为稳定性更高而更有应用前景。新型交互扩散结晶板中,蛋白质结晶体系通过一个较缓慢的交互扩散过程实现蛋白质结晶溶液浓度的变化,并且结晶体系可达到共平衡,因而能显著提高蛋白质晶体结晶条件筛选数和晶体质量:蛋白酶K结晶条件数由39个提升至47个,分辨率由1.66 Å提升至1.54 Å。利用基底材料的一些特性,如静电作用、疏水作用和氢键,可以起到促进蛋白质分子聚集的功能,从而促进形核。
    本文从物理作用和化学作用两个角度详细总结了形核剂对蛋白质结晶的影响,并展望了该领域的发展前景及研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石苗
侯海
FiazAhmad
尹大川
关键词:  蛋白质结晶  结晶方法学  形核剂    
Abstract: The acquisition of protein crystals is a crucial step in the analysis of three-dimensional structure of proteins, the production of medical drugs and the construction of self-assembled nanostructures. For example, when we use X-ray diffraction technology to determine the three-dimensional structure of protein, first of all, we need to obtain the high quality of protein crystals. Protein crystallization has two steps, nucleation and growth. The progress from the undersaturation zone through metastable zone to nucleation zone is called nucleation. When the protein crystal nucleus passes through the nucleation zone to the metastable zone, the crystal nucleus grows and ripening occurs. In the process of protein crystallization, formation of protein crystal nucleus is fundamental. The whole crystallization system has the same probability to nucleate in homogeneous nucleation process. In this process, the protein starts to nucleate in the nucleation zone only when the degree of supersaturation of the protein solution crystallization system could overcome the nucleation barrier. Thus homogeneous nucleation process has certain limitations for the low concentration solution in crystallization.
    In comparison to homogenous nucleation, with the presence of nucleating agents, the heterogeneous nucleation of the protein crystals faces relatively small resistance and barriers in this process. Hence the use of nucleating agents has critical significance for low-crystallizability proteins or low-initial-concentration crystallization process. With the development of the structural biology, nucleating agents is still a hot issue in crystallization methodology studies.
    The adsorption effect of porous microspheres is beneficial to the formation of disordered protein molecular clusters, and thus could promote protein nucleation. Adding porous microspheres will lead to both the increment of the number of crystallization scree-ning hits and the quality of the resultant crystals. The use of artificial seed crystal could make protein molecules orderly arranged, and keep a low-concentration condition throughout the crystal nucleation growth process. And the crosslinked crystal seed has greater application potential due to its higher stability. The novel cross-diffusion microbatch plate enables the crystallization system to realize concentration adjusting through a relatively slow cross-diffusion process and to finally reach mutual equilibrium, and in consequence, causes significant increment in the protein crystalline screening hits and the crystal quality improvement, as the number of crystallization screening hits for protein protease K increases from 39 to 47, and the diffraction resolution of crystal increases from 1.66 Å to 1.54 Å. Some properties of the substrate, such as electrostatic effect, hydrophobic interaction and hydrogen bonding, can be also used to promote the protein molecules aggregation and nucleation.
    This paper summarizes the influence which nucleating agents exert on the protein crystallization from two perspectives of physical and chemical interactions, also roughly discusses the future prospect and research directions.
Key words:  protein crystallization    crystallization methodology    nucleating agent
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TB30  
基金资助: 国家自然科学基金 (31200551);陕西省自然科学基础研究计划项目(2017JM3036);国家级大学生创新创业训练计划项目(201710699112;201610699138)
作者简介:  石苗:男,1991年生,硕士研究生,研究方向为结晶方法学 E-mail:s@mail.nwpu.edu.cn 侯海:共同第一作者,通信作者,男,1981年生,副教授,研究方向为材料科学及结构生物学 E-mail:houhai@live.cn 尹大川:男,1969年生,教授,研究方向为材料科学及结构生物学 E-mail:yindc@nwpu.edu.cn
引用本文:    
石苗, 侯海, FiazAhmad, 尹大川. 用于蛋白质结晶的形核剂研究综述[J]. 《材料导报》期刊社, 2018, 32(11): 1820-1826.
SHI Miao, HOU Hai, Fiaz Ahmad, YIN Dachuan. Nucleating Agents Applying to Protein Crystallization: a Review. Materials Reports, 2018, 32(11): 1820-1826.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.008  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1820
1 Godoy A S, Lima G M, Oliveira K I, et al. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase[J].Nature Communications,2017,8:14764.
2 Gilliland G L, Ladner J E. Crystallization of biological macromolecules for X-ray diffraction studies[J].Current Opinion in Structural Biology,1996,6(5):595.
3 Moreno A, Saridakis E, Chayen N E. Combination of oils and gels for enhancing the growth of protein crystals[J].Journal of Applied Crystallography,2001,35(1):140.
4 Newman J. One plate, two plates, a thousand plates. How crystallisation changes with large numbers of samples[J].Methods,2011,55(1):73.
5 Rupp B, Wang J. Predictive models for protein crystallization[J].Methods,2004,34(3):390.
6 Takakura T, Ito T, Yagi S,et al. High-level expression and bulk crystallization of recombinant L-methionine gamma-lyase, an anticancer agent[J].Applied Microbiology and Biotechnology,2006,70(2):183.
7 Dou Zhi, Song Chuanxin, Yao Lili. Crystallization and its application in pharmaceutical production[J].Shandong Chemical Industry,2007,36(8):25(in Chinese).
窦智,宋传信,姚丽丽.结晶及其在医药生产中的应用[J].山东化工,2007,36(8):25.
8 Kobayashi N, Yanase K, Sato T,et al. Self-assembling nano-architectures created from a protein nano-building block using an intermolecularly folded dimeric de novo protein[J].Journal of the American Chemical Society,2015,137(35):11285.
9 Chayen N, Saridakis E, El-Bahar R,et al. Porous silicon: An effective nucleation-inducing material for protein crystallization[J].Journal of Molecular Biology,2001,312(4):591.
10 Guo Y Z, Sun L H, Oberthuer D,et al. Utilisation of adsorption and desorption for simultaneously improving protein crystallisation success rate and crystal quality[J].Scientific Reports,2014,4(4):7308.
11 Bergfors T. Seeds to crystals[J].Journal of Structural Biology,2003,142(1):66.
12 Vekilov P G. Two-step mechanism for the nucleation of crystals from solution[J].Journal of Crystal Growth,2005,275(1-2):65.
13 Vekilov P G. The two-step mechanism of nucleation of crystals in solution[J].Nanoscale,2010,2(11):2346.
14 Christenson H K. Two-step crystal nucleation via capillary condensation[J].CrystEngComm,2013,15(11):2030.
15 Schubert R, Meyer A, Baitan D, et al. Real-time observation of protein dense liquid cluster evolution during nucleation in protein crystallization[J].Crystal Growth & Design,2017,17(3):954.
16 Turnbull D. Kinetics of heterogeneous nucleation[J].The Journal of Chemical Physics,1950,18(2):198.
17 Chayen N E. Methods for separating nucleation and growth in protein crystallisation[J].Progress in Biophysics and Molecular Biology,2005,88(3):329.
18 Kuznetsov Y G, Malkin A J, Mcpherson A. The influence of precipitant concentration on macromolecular crystal growth mechanisms[J].Journal of Crystal Growth,2001,232:114.
19 Chayen N E, Saridakis E, Sear R P. Experiment and theory for he-terogeneous nucleation of protein crystals in a porous medium[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):597.
20 Saridakis E, Chayen N E. Imprinted polymers assisting protein crystallization[J].Trends in Biotechnology,2013,31(9):515.
21 Matsunaga T, Takeuchi T. Crystallized protein-imprinted polymer chips[J].Chemistry Letters,2006,35(9):1030.
22 Hooks D E, Fritz T, Ward M D. Epitaxy and molecular organization on solid substrates[J].Advanced Materials,2001,13(4):227.
23 Koma A. Molecular beam epitaxial growth of organic thin films[J].Progress in Crystal Growth & Characterization of Materials,1995,30(2-3):129.
24 Mannsfeld S C B, Fritz T. Understanding organic-inorganic hete-roepitaxial growth of molecules on crystalline substrates: Experiment and theory[J].Physical Review B Condensed Matter,DOI:10.1103/PhysRevB.71.235405.
25 Carter P W, Ward M D. Topographically directed nucleation of organic crystals on molecular single-crystal substrates[J].Journal of the American Chemical Society,1993,115(24):11521.
26 Foroughi L M, Kang Y N, Matzger A J. Polymer-induced heteronucleation for protein single crystal growth: Structural elucidation of bovine liver catalase and concanavalin A forms[J].Crystal Growth & Design,2015,11(4):1294.
27 Hsu H, Adigun O O, Taylor L S,et al. Crystallization of acetaminophen on chitosan films blended with different acids[J].Chemical Engineering Science,2015,126:1.
28 Mcpherson A, Shlichta P. Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces[J].Science,1988,239(4838):385.
29 D′arcy A, Villard F, Marsh M. An automated microseed matrix-screening method for protein crystallization[J].Acta Crystallographica Section D: Biological Crystallography,2007,63(4):550.
30 Hemming S A, Bochkarev A, Darst S A,et al. The mechanism of protein crystal growth from lipid layers[J].Journal of Molecular Biology,1995,246(2):308.
31 O′dell W B, Swartz P D, Weiss K L,et al. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction[J].Acta Crystallographica Section F: Structural Biology Communications,2017,73(2):70.
32 Rumpf T, Gerhardt S, Einsle O,et al. Seeding for sirtuins: Microseed matrix seeding to obtain crystals of human Sirt3 and Sirt2 sui-table for soaking[J].Acta Crystallographica Section F: Structural Biology Communications,2015,71(12):1498.
33 Sansenya S, Mutoh R, Charoenwattanasatien R,et al. Expression and crystallization of a bacterial glycoside hydrolase family 116 β-glucosidase from thermoanaerobacterium xylanolyticum[J].Acta Crystallographica Section F: Structural Biology Communications,2015,71(1):41.
34 Abuhammad A, Mcdonough M A, Brem J,et al.“To cross-seed or not to cross-seed”: A pilot study using metallo-β-lactamases[J].Crystal Growth & Design,2017,17(2):913.
35 Yan E K, Cao H L, Zhang C Y,et al. Cross-linked protein crystals by glutaraldehyde and their applications[J].RSC Advances,2015,5(33):26163.
36 Nneji G A, Chayen N E. A crystallization plate for controlling evaporation in hanging drops[J].Journal of Applied Crystallography,2004,37(3):502.
37 Chen R Q, Yin D C, Liu Y M,et al. Promoting protein crystallization using a plate with simple geometry[J].Acta Crystallographica,2014,70(3):647.
38 Dong C, Zhang C Y, Liu Y Y,et al. A new design of protein crystallization plates to expand concentration screening space in cross-diffusion microbatch and microbatch methods[J].Crystal Growth & Design,2016,16(2):569.
39 Hou H, Wang B, Hu S Y, et al. A comparative study on the quality of protein crystals obtained using the cross-diffusion microbatch and sitting-drop vapor diffusion methods[J].CrystEngComm,2015,17(29):5365.
40 Shams H, Wizel B, Weis S E,et al. An investigation of the effects of self-assembled monolayers on protein crystallisation[J].International Journal of Molecular Sciences,2013,14(6):12329.
41 Vepslinen L, Palmunen K, Uotila S,et al. Polysaccharides as precipitants in protein crystallization for X-ray diffraction studies[J].Crystal Growth & Design,2011,11(4):1152.
42 Tang L, Huang Y B, Liu D Q,et al. Effects of the silanized mica surface on protein crystallization[J].Acta Crystallographica Section D: Biological Crystallography,2005,61(1):53.
43 Hou H, Wang B, Hu S Y,et al. An investigation on the effect of surface roughness of crystallization plate on protein crystallization[J].Journal of Crystal Growth, DOI: 10.1016/j.jcrysgro.2016.10.007.
44 Tosi G, Fermani S, Falini G,et al. Crystallization of proteins on functionalized surfaces[J].Acta Crystallographica Section D: Biological Crystallography,2008,64(Pt 10):1054.
45 Kumar M N V R. A review of chitin and chitosan applications[J].Reactive & Functional Polymers,2000,46(1):1.
46 Fermani S, Falini G, Minnucci M, et al. Protein crystallization on polymeric film surfaces[J].Journal of Crystal Growth,2001,224(3):327.
47 Asanov A N, Delucas L J, Oldham P B,et al. Interfacial aggregation of bovine serum albumin related to crystallization conditions studied by total internal reflection fluorescence[J].Journal of Colloid & Interface Science,1997,196(1):62.
48 Xu X, Li Y, Gauthier L, et al. Expression, crystallization and X-ray diffraction analysis of a complex between B7-H6, a tumor cell ligand for the natural cytotoxicity receptor NKp30, and an inhibitory antibody[J].Acta Crystallographica Section F: Structural Biology Communications,2015,71(6):697.
49 Xu X, Narni-Mancinelli E, Cantoni C, et al. Structural insights into the inhibitory mechanism of an antibody against B7-H6, a stress-induced cellular ligand for the natural killer cell receptor NKp30[J].Journal of Molecular Biology,2016,428(22):4457.
50 Kolek S A, Bruning B, Shaw Stewart P D. A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase[J].Acta Crystallographica Section F: Structural Biology Communications,2016,72(4):307.
[1] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 王方, 蒋恩, 米大为. 应用于核岛主设备的RCC-M F5100与AMS 2460镀铬标准的比较[J]. 材料导报, 2019, 33(z1): 440-443.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 王宗乾, 杨海伟. pH值对海藻酸钠溶液黏度及体系中氢键的影响规律[J]. 材料导报, 2019, 33(8): 1289-1292.
[6] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[7] 陈正涵,孙晓峰,李占明,史玉鹏. 镍铝青铜基冷喷涂Cu402F与Cu涂层的力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1618-1622.
[8] 龚乾江,徐 祥,杨 明,张世伟,肖 瑞. CPR/NR和高性能填料对复合摩擦材料力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1628-1634.
[9] 刘建忠, 韩方玉, 周华新, 张丽辉, 刘加平. 超高性能混凝土拉伸力学行为的研究进展*[J]. CLDB, 2017, 31(23): 24-32.
[10] 常明丰, 黄平明, 裴建中, 张久鹏. 基于离散元方法的沥青混合料力链演化及分布量化分析*[J]. 《材料导报》期刊社, 2017, 31(18): 155-159.
[11] 王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
[12] 周磊, 宋亚南, 王海斗, 李国禄, 张建军. 超高周疲劳的影响因素及疲劳机理的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 84-89.
[13] 闫志龙, 李永胜, 胡凯, 周晓荣. 双相不锈钢相分解研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 75-80.
[14] 罗伟铭, 石少卿, 陈自鹏, 孙建虎. 层间配置对成层式铝蜂窝吸能特性的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 82-87.
[15] 杨君宝, 郭秋萍, 赵博远, 金浩, 郭策安, 张健. CrNi3MoVA钢表面电火花沉积W-Ni-Fe-Co涂层的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(12): 35-38.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed